Chapter 5: Problem 81
(a) Let \(\\{N(t), t \geqslant 0\\}\) be a nonhomogeneous Poisson process with mean value function \(m(t) .\) Given \(N(t)=n\), show that the unordered set of arrival times has the same distribution as \(n\) independent and identically distributed random variables having distribution function $$ F(x)=\left\\{\begin{array}{ll} \frac{m(x)}{m(t)}, & x \leqslant t \\ 1, & x \geqslant t \end{array}\right. $$ (b) Suppose that workmen incur accidents in accordance with a nonhomogeneous Poisson process with mean value function \(m(t) .\) Suppose further that each injured man is out of work for a random amount of time having distribution F. Let \(X(t)\) be the number of workers who are out of work at time \(t\). By using part (a), find \(E[X(t)]\)
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.