Chapter 5: Problem 58
Consider the coupon collecting problem where there are \(m\) distinct types of coupons, and each new coupon collected is type \(j\) with probability \(p_{j}, \sum_{j=1}^{m} p_{j}=1\). Suppose you stop collecting when you have a complete set of at least one of each type. Show that $$ P\\{i \text { is the last type collected }\\}=E\left[\prod_{j \neq i}\left(1-U^{\lambda_{i} / \lambda_{i}}\right)\right] $$ where \(U\) is a uniform random variable on \((0,1)\).