Chapter 5: Problem 36
Let \(S(t)\) denote the price of a security at time \(t .\) A popular model for the process \(\\{S(t), t \geqslant 0\\}\) supposes that the price remains unchanged until a "shock" occurs, at which time the price is multiplied by a random factor. If we let \(N(t)\) denote the number of shocks by time \(t\), and let \(X_{i}\) denote the \(i\) th multiplicative factor, then this model supposes that $$ S(t)=S(0) \prod_{i=1}^{N(t)} X_{i} $$ where \(\prod_{i=1}^{N(t)} X_{i}\) is equal to 1 when \(N(t)=0 .\) Suppose that the \(X_{i}\) are independent exponential random variables with rate \(\mu ;\) that \(\\{N(t), t \geqslant 0\\}\) is a Poisson process with rate \(\lambda ;\) that \(\\{N(t), t \geqslant 0\\}\) is independent of the \(X_{i} ;\) and that \(S(0)=s\). (a) Find \(E[S(t)]\). (b) Find \(E\left[S^{2}(t)\right]\)
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.