Chapter 5: Problem 26
Each entering customer must be served first by server 1 , then by server 2 , and finally by server \(3 .\) The amount of time it takes to be served by server \(i\) is an exponential random variable with rate \(\mu_{i}, i=1,2,3 .\) Suppose you enter the system when it contains a single customer who is being served by server \(3 .\) (a) Find the probability that server 3 will still be busy when you move over to server 2 . (b) Find the probability that server 3 will still be busy when you move over to server 3 . (c) Find the expected amount of time that you spend in the system. (Whenever you encounter a busy server, you must wait for the service in progress to end before you can enter service.) (d) Suppose that you enter the system when it contains a single customer who is being served by server \(2 .\) Find the expected amount of time that you spend in the system.