Chapter 5: Problem 11
Let \(X, Y_{1}, \ldots, Y_{n}\) be independent exponential random variables; \(X\) having rate \(\lambda\), and \(Y_{i}\) having rate \(\mu\). Let \(A_{j}\) be the event that the \(j\) th smallest of these \(n+1\) random variables is one of the \(Y_{i} .\) Find \(p=P\left[X>\max _{i} Y_{i}\right\\}\), by using the identity $$ p=P\left(A_{1} \cdots A_{n}\right)=P\left(A_{1}\right) P\left(A_{2} \mid A_{1}\right) \cdots P\left(A_{n} \mid A_{1} \ldots A_{n-1}\right) $$ Verify your answer when \(n=2\) by conditioning on \(X\) to obtain \(p\).
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.