Chapter 4: Problem 67
At all times, an urn contains \(N\) balls?-some white balls and some black balls. At each stage, a coin having probability \(p, 0
Chapter 4: Problem 67
At all times, an urn contains \(N\) balls?-some white balls and some black balls. At each stage, a coin having probability \(p, 0
All the tools & learning materials you need for study success - in one app.
Get started for freeLet \(\left\\{X_{n}, n \geqslant 0\right\\}\) denote an ergodic Markov chain with limiting probabilities \(\pi_{i} .\) Define the process \(\left\\{Y_{n}, n \geqslant 1\right\\}\) by \(Y_{n}=\left(X_{n-1}, X_{n}\right)\). That is, \(Y_{n}\) keeps track of the last two states of the original chain. Is \(\left\\{Y_{n}, n \geqslant 1\right\\}\) a Markov chain? If so, determine its transition probabilities and find $$ \lim _{n \rightarrow \infty} P\left\\{Y_{n}=(i, j)\right\\} $$
A flea moves around the vertices of a triangle in the following manner: Whenever it is at vertex \(i\) it moves to its clockwise neighbor vertex with probability \(p_{i}\) and to the counterclockwise neighbor with probability \(q_{i}=1-p_{i}, i=1,2,3\). (a) Find the proportion of time that the flea is at each of the vertices. (b) How often does the flea make a counterclockwise move that is then followed by five consecutive clockwise moves?
Consider a process \(\left\\{X_{n}, n=0,1, \ldots\right\\}\), which takes on the values 0,1 , or 2 . Suppose $$ \begin{aligned} &P\left\\{X_{n+1}=j \mid X_{n}=i, X_{n-1}=i_{n-1}, \ldots, X_{0}=i_{0}\right\\} \\ &\quad=\left\\{\begin{array}{ll} P_{i j}^{\mathrm{I}}, & \text { when } n \text { is even } \\ P_{i i}^{\mathrm{II}}, & \text { when } n \text { is odd } \end{array}\right. \end{aligned} $$ where \(\sum_{j=0}^{2} P_{i j}^{\mathrm{I}}=\sum_{j=0}^{2} P_{i j}^{\mathrm{II}}=1, i=0,1,2 .\) Is \(\left\\{X_{n}, n \geqslant 0\right\\}\) a Markov chain? If not, then show how, by enlarging the state space, we may transform it into a Markov chain.
In Example 4.3, Gary is in a cheerful mood today. Find the expected number of days until he has been glum for three consecutive days.
Coin 1 comes up heads with probability \(0.6\) and \(\operatorname{coin} 2\) with probability \(0.5 . \mathrm{A}\) coin is continually flipped until it comes up tails, at which time that coin is put aside and we start flipping the other one. (a) What proportion of flips use coin 1? (b) If we start the process with \(\operatorname{coin} 1\) what is the probability that \(\operatorname{coin} 2\) is used on the fifth flip?
What do you think about this solution?
We value your feedback to improve our textbook solutions.