Chapter 4: Problem 54
Consider the Ehrenfest urn model in which \(M\) molecules are distributed between two urns, and at each time point one of the molecules is chosen at random and is then removed from its urn and placed in the other one. Let \(X_{n}\) denote the number of molecules in urn 1 after the \(n\) th switch and let \(\mu_{n}=E\left[X_{n}\right]\). Show that (a) \(\mu_{n+1}=1+(1-2 / M) \mu_{n}\). (b) Use (a) to prove that $$ \mu_{n}=\frac{M}{2}+\left(\frac{M-2}{M}\right)^{n}\left(E\left[X_{0}\right]-\frac{M}{2}\right) $$
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.