Chapter 4: Problem 51
In Example 4.3, Gary is in a cheerful mood today. Find the expected number of days until he has been glum for three consecutive days.
Chapter 4: Problem 51
In Example 4.3, Gary is in a cheerful mood today. Find the expected number of days until he has been glum for three consecutive days.
All the tools & learning materials you need for study success - in one app.
Get started for freeA group of \(n\) processors is arranged in an ordered list. When a job arrives, the first processor in line attempts it; if it is unsuccessful, then the next in line tries it; if it too is unsuccessful, then the next in line tries it, and so on. When the job is successfully processed or after all processors have been unsuccessful, the job leaves the system. At this point we are allowed to reorder the processors, and a new job appears. Suppose that we use the one- closer reordering rule, which moves the processor that was successful one closer to the front of the line by interchanging its position with the one in front of it. If all processors were unsuccessful (or if the processor in the first position was successful), then the ordering remains the same. Suppose that each time processor \(i\) attempts a job then, independently of anything else, it is successful with probability \(p_{i}\). (a) Define an appropriate Markov chain to analyze this model. (b) Show that this Markov chain is time reversible. (c) Find the long-run probabilities.
In the gambler's ruin problem of Section 4.5.1, suppose the gambler's fortune is presently \(i\), and suppose that we know that the gambler's fortune will eventually reach \(N\) (before it goes to 0 ). Given this information, show that the probability he wins the next gamble is $$ \begin{array}{ll} \frac{p\left[1-(q / p)^{i+1}\right]}{1-(q / p)^{i}}, & \text { if } p \neq \frac{1}{2} \\ \frac{i+1}{2 i}, & \text { if } p=\frac{1}{2} \end{array} $$
Suppose that on each play of the game a gambler either wins 1 with probability \(p\) or loses 1 with probability \(1-p\). The gambler continues betting until she or he is either up \(n\) or down \(m\). What is the probability that the gambler quits a winner?
Consider three urns, one colored red, one white, and one blue. The red urn contains 1 red and 4 blue balls; the white urn contains 3 white balls, 2 red balls, and 2 blue balls; the blue urn contains 4 white balls, 3 red balls, and 2 blue balls. At the initial stage, a ball is randomly selected from the red urn and then returned to that urn. At every subsequent stage, a ball is randomly selected from the urn whose color is the same as that of the ball previously selected and is then returned to that urn. In the long run, what proportion of the selected balls are red? What proportion are white? What proportion are blue?
Suppose in the gambler's ruin problem that the probability of winning a bet depends on the gambler's present fortune. Specifically, suppose that \(\alpha_{i}\) is the probability that the gambler wins a bet when his or her fortune is \(i\). Given that the gambler's initial fortune is \(i\), let \(P(i)\) denote the probability that the gambler's fortune reaches \(N\) before 0 . (a) Derive a formula that relates \(P(i)\) to \(P(i-1)\) and \(P(i+1)\). (b) Using the same approach as in the gambler's ruin problem, solve the equation of part (a) for \(P(i)\) (c) Suppose that \(i\) balls are initially in urn 1 and \(N-i\) are in urn 2, and suppose that at each stage one of the \(N\) balls is randomly chosen, taken from whichever urn it is in, and placed in the other urn. Find the probability that the first urn becomes empty before the second.
What do you think about this solution?
We value your feedback to improve our textbook solutions.