Chapter 4: Problem 5
A Markov chain \(\left\\{X_{n}, n \geqslant 0\right\\}\) with states \(0,1,2\), has the transition probability matrix $$ \left[\begin{array}{ccc} \frac{1}{2} & \frac{1}{3} & \frac{1}{6} \\ 0 & \frac{1}{3} & \frac{2}{3} \\ \frac{1}{2} & 0 & \frac{1}{2} \end{array}\right] $$ If \(P\left\\{X_{0}=0\right\\}=P\left\\{X_{0}=1\right\\}=\frac{1}{4}\), find \(E\left[X_{3}\right]\).