Chapter 4: Problem 4
Consider a process \(\left\\{X_{n}, n=0,1, \ldots\right\\}\), which takes on the values 0,1 , or 2 . Suppose $$ \begin{aligned} &P\left\\{X_{n+1}=j \mid X_{n}=i, X_{n-1}=i_{n-1}, \ldots, X_{0}=i_{0}\right\\} \\ &\quad=\left\\{\begin{array}{ll} P_{i j}^{\mathrm{I}}, & \text { when } n \text { is even } \\ P_{i i}^{\mathrm{II}}, & \text { when } n \text { is odd } \end{array}\right. \end{aligned} $$ where \(\sum_{j=0}^{2} P_{i j}^{\mathrm{I}}=\sum_{j=0}^{2} P_{i j}^{\mathrm{II}}=1, i=0,1,2 .\) Is \(\left\\{X_{n}, n \geqslant 0\right\\}\) a Markov chain? If not, then show how, by enlarging the state space, we may transform it into a Markov chain.