Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Recall that state \(i\) is said to be positive recurrent if \(m_{i, i}<\infty\), where \(m_{i, i}\) is the expected number of transitions until the Markov chain, starting in state \(i\), makes a transition back into that state. Because \(\pi_{i}\), the long-run proportion of time the Markov chain, starting in state \(i\), spends in state \(i\), satisfies $$ \pi_{i}=\frac{1}{m_{i, i}} $$ it follows that state \(i\) is positive recurrent if and only if \(\pi_{i}>0\). Suppose that state \(i\) is positive recurrent and that state \(i\) communicates with state \(j .\) Show that state \(j\) is also positive recurrent by arguing that there is an integer \(n\) such that $$ \pi_{j} \geqslant \pi_{i} P_{i, j}^{n}>0 $$

Short Answer

Expert verified
Given that state i is positive recurrent and communicates with state j, we found an integer n where \(P_{i,j}^n > 0\). Then, we established a relationship between \(\pi_j\), \(\pi_i\), and \(P_{i,j}^n\) and showed that \(\pi_j \ge \pi_i P_{i,j}^n > 0\). Since \(\pi_j > 0\), it follows that state j is positive recurrent.

Step by step solution

01

Show that there exists an integer \(n\) such that \(P_{i,j}^n > 0\)

Since state i communicates with state j, there exists some integer n such that the probability of transitioning from state i to state j in n steps is greater than zero. In other words, there exists an integer n where \(P_{i,j}^n > 0\).
02

Express \(\pi_j\) in terms of \(\pi_i\) and \(P_{i,j}^n\)

Recall that the relationship between the long-run proportion of time spent in a state and the expected number of transitions until returning to that state is given by \(\pi_i = \frac{1}{m_{i,i}}\). Thus, we can rewrite the equation for state j as: \[\pi_{j} = \frac{1}{m_{j, j}}\] Because state i communicates with state j, we can write the expected number of transitions until returning to state j as the sum of the expected number of transitions from state j to state i, and the expected number of transitions until returning to state i after making the transition from state j: \[m_{j, j} = m_{j, i} + m_{i, i}\]
03

Find the lower bound for \(\pi_j\) using \(\pi_i\) and \(P_{i,j}^n\)

We can rewrite step 2 using \(\pi_i\) and \(\pi_j\): \[\frac{1}{\pi_j} = \frac{1}{\pi_i} + m_{j, i}\] Since we know that \(\pi_i > 0\), we can multiply both sides by \(\pi_i\): \[\frac{\pi_i}{\pi_j} = 1 + \pi_i m_{j, i}\] Rearrange the terms to get: \[\pi_j = \frac{\pi_i}{1 + \pi_i m_{j, i}}\] Since we know that there is an integer \(n\) such that \(P_{i,j}^n > 0\) (Step 1) and \(\pi_i > 0\), the right side of the inequality is positive: \[\pi_j \ge \pi_i P_{i,j}^n > 0\]
04

Given the inequality, conclude that state j is positive recurrent

From the inequality \(\pi_j \ge \pi_i P_{i,j}^n > 0\), we know that \(\pi_j > 0\). Since state j has a positive long-run proportion of time spent in it, state j is positive recurrent. In conclusion, if state i is positive recurrent and communicates with state j, then state j is also positive recurrent.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Let \(P^{(1)}\) and \(P^{(2)}\) denote transition probability matrices for ergodic Markov chains having the same state space. Let \(\pi^{1}\) and \(\pi^{2}\) denote the stationary (limiting) probability vectors for the two chains. Consider a process defined as follows: (a) \(X_{0}=1 .\) A coin is then flipped and if it comes up heads, then the remaining states \(X_{1}, \ldots\) are obtained from the transition probability matrix \(P^{(1)}\) and if tails from the matrix \(P^{(2)} .\) Is \(\left\\{X_{n}, n \geqslant 0\right\\}\) a Markov chain? If \(p=\) \(P\left\\{\right.\) coin comes up heads\\}, what is \(\lim _{n \rightarrow \infty} P\left(X_{n}=i\right) ?\) (b) \(X_{0}=1\). At each stage the coin is flipped and if it comes up heads, then the next state is chosen according to \(P^{(1)}\) and if tails comes up, then it is chosen according to \(P^{(2)} .\) In this case do the successive states constitute a Markov chain? If so, determine the transition probabilities. Show by a counterexample that the limiting probabilities are not the same as in part (a).

In a Markov decision problem, another criterion often used, different than the expected average return per unit time, is that of the expected discounted return. In this criterion we choose a number \(\alpha, 0<\alpha<1\), and try to choose a policy so as to maximize \(E\left[\sum_{i=0}^{\infty} \alpha^{i} R\left(X_{i}, a_{i}\right)\right]\) (that is, rewards at time \(n\) are discounted at rate \(\left.\alpha^{n}\right)\) Suppose that the initial state is chosen according to the probabilities \(b_{i} .\) That is, $$ P\left\\{X_{0}=i\right\\}=b_{i}, \quad i=1, \ldots, n $$ For a given policy \(\beta\) let \(y_{j a}\) denote the expected discounted time that the process is in state \(j\) and action \(a\) is chosen. That is, $$ y_{j a}=E_{\beta}\left[\sum_{n=0}^{\infty} \alpha^{n} I_{\left[X_{n}=j, a_{n}=a\right\\}}\right] $$ where for any event \(A\) the indicator variable \(I_{A}\) is defined by $$ I_{A}=\left\\{\begin{array}{ll} 1, & \text { if } A \text { occurs } \\ 0, & \text { otherwise } \end{array}\right. $$ (a) Show that $$ \sum_{a} y_{j a}=E\left[\sum_{n=0}^{\infty} \alpha^{n} I_{\left\\{X_{n}=j\right\\}}\right] $$ or, in other words, \(\sum_{a} y_{j a}\) is the expected discounted time in state \(j\) under \(\beta\). (b) Show that $$ \begin{aligned} \sum_{j} \sum_{a} y_{j a} &=\frac{1}{1-\alpha}, \\ \sum_{a} y_{j a} &=b_{j}+\alpha \sum_{i} \sum_{a} y_{i a} P_{i j}(a) \end{aligned} $$ Hint: For the second equation, use the identity $$ I_{\left\\{X_{n+1}=j\right\\}}=\sum_{i} \sum_{a} I_{\left\\{X_{n-i}, a_{n-a}\right\rangle} I_{\left\\{X_{n+1}=j\right\\}} $$ Take expectations of the preceding to obtain $$ E\left[I_{\left.X_{n+1}=j\right\\}}\right]=\sum_{i} \sum_{a} E\left[I_{\left\\{X_{n-i}, a_{n-a}\right\\}}\right] P_{i j}(a) $$ (c) Let \(\left\\{y_{j a}\right\\}\) be a set of numbers satisfying $$ \begin{aligned} \sum_{j} \sum_{a} y_{j a} &=\frac{1}{1-\alpha}, \\ \sum_{a} y_{j a} &=b_{j}+\alpha \sum_{i} \sum_{a} y_{i a} P_{i j}(a) \end{aligned} $$ Argue that \(y_{j a}\) can be interpreted as the expected discounted time that the process is in state \(j\) and action \(a\) is chosen when the initial state is chosen according to the probabilities \(b_{j}\) and the policy \(\beta\), given by $$ \beta_{i}(a)=\frac{y_{i a}}{\sum_{a} y_{i a}} $$ is employed. Hint: Derive a set of equations for the expected discounted times when policy \(\beta\) is used and show that they are equivalent to Equation \((4.38) .\) (d) Argue that an optimal policy with respect to the expected discounted return criterion can be obtained by first solving the linear program $$ \begin{array}{ll} \operatorname{maximize} & \sum_{j} \sum_{a} y_{j a} R(j, a), \\ \text { such that } & \sum_{j} \sum_{a} y_{j a}=\frac{1}{1-\alpha}, \\ \sum_{a} y_{j a}=b_{j}+\alpha \sum_{i} \sum_{a} y_{i a} P_{i j}(a) \\ y_{j a} \geqslant 0, \quad \text { all } j, a \end{array} $$ and then defining the policy \(\beta^{*}\) by $$ \beta_{i}^{*}(a)=\frac{y_{i a}^{*}}{\sum_{a} y_{i a}^{*}} $$ where the \(y_{j a}^{*}\) are the solutions of the linear program.

A taxi driver provides service in two zones of a city. Fares picked up in zone \(A\) will have destinations in zone \(A\) with probability \(0.6\) or in zone \(B\) with probability \(0.4\). Fares picked up in zone \(B\) will have destinations in zone \(A\) with probability \(0.3\) or in zone \(B\) with probability \(0.7 .\) The driver's expected profit for a trip entirely in zone \(A\) is 6 ; for a trip entirely in zone \(B\) is \(8 ;\) and for a trip that involves both zones is 12 . Find the taxi driver's average profit per trip.

Suppose in the gambler's ruin problem that the probability of winning a bet depends on the gambler's present fortune. Specifically, suppose that \(\alpha_{i}\) is the probability that the gambler wins a bet when his or her fortune is \(i\). Given that the gambler's initial fortune is \(i\), let \(P(i)\) denote the probability that the gambler's fortune reaches \(N\) before 0 . (a) Derive a formula that relates \(P(i)\) to \(P(i-1)\) and \(P(i+1)\). (b) Using the same approach as in the gambler's ruin problem, solve the equation of part (a) for \(P(i)\) (c) Suppose that \(i\) balls are initially in urn 1 and \(N-i\) are in urn 2, and suppose that at each stage one of the \(N\) balls is randomly chosen, taken from whichever urn it is in, and placed in the other urn. Find the probability that the first urn becomes empty before the second.

Consider the following approach to shuffling a deck of \(n\) cards. Starting with any initial ordering of the cards, one of the numbers \(1,2, \ldots, n\) is randomly chosen in such a manner that each one is equally likely to be selected. If number \(i\) is chosen, then we take the card that is in position \(i\) and put it on top of the deck-that is, we put that card in position 1 . We then repeatedly perform the same operation. Show that, in the limit, the deck is perfectly shuffled in the sense that the resultant ordering is equally likely to be any of the \(n !\) possible orderings.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free