Chapter 4: Problem 21
A DNA nucleotide has any of four values. A standard model for a mutational change of the nucleotide at a specific location is a Markov chain model that supposes that in going from period to period the nucleotide does not change with probability \(1-3 \alpha\), and if it does change then it is equally likely to change to any of the other three values, for some \(0<\alpha<\frac{1}{3}\). (a) Show that \(P_{1,1}^{n}=\frac{1}{4}+\frac{3}{4}(1-4 \alpha)^{n}\). (b) What is the long-run proportion of time the chain is in each state?