Chapter 3: Problem 97
Use the conditional variance formula to find the variance of a geometric random variable.
Chapter 3: Problem 97
Use the conditional variance formula to find the variance of a geometric random variable.
All the tools & learning materials you need for study success - in one app.
Get started for freeLet \(X\) be uniform over \((0,1) .\) Find \(E\left[X \mid X<\frac{1}{2}\right]\).
Let \(X_{i}, i \geqslant 0\) be independent and identically distributed random variables with probability mass function $$ p(j)=P\left[X_{i}=i\right\\}, \quad j=1, \ldots, m, \quad \sum_{j=1}^{m} P(j)=1 $$ Find \(E[N]\), where \(N=\min \left[n>0: X_{n}=X_{0}\right\\}\)
Suppose that independent trials, each of which is equally likely to have any of \(m\) possible outcomes, are performed until the same outcome occurs \(k\) consecutive times. If \(N\) denotes the number of trials, show that $$ E[N]=\frac{m^{k}-1}{m-1} $$ Some people believe that the successive digits in the expansion of \(\pi=3.14159 \ldots\) are "uniformly" distributed. That is, they believe that these digits have all the appearance of being independent choices from a distribution that is equally likely to be any of the digits from 0 through \(9 .\) Possible evidence against this hypothesis is the fact that starting with the \(24,658,601\) st digit there is a run of nine successive \(7 \mathrm{~s}\). Is this information consistent with the hypothesis of a uniform distribution? To answer this, we note from the preceding that if the uniform hypothesis were correct, then the expected number of digits until a run of nine of the same value occurs is $$ \left(10^{9}-1\right) / 9=111,111,111 $$ Thus, the actual value of approximately 25 million is roughly 22 percent of the theoretical mean. However, it can be shown that under the uniformity assumption the standard deviation of \(N\) will be approximately equal to the mean. As a result, the observed value is approximately \(0.78\) standard deviations less than its theoretical mean and is thus quite consistent with the uniformity assumption.
Consider a sequence of independent trials, each of which is equally likely to result in any of the outcomes \(0,1, \ldots, m\). Say that a round begins with the first trial, and that a new round begins each time outcome 0 occurs. Let \(N\) denote the number of trials that it takes until all of the outcomes \(1, \ldots, m-1\) have occurred in the same round. Also, let \(T_{j}\) denote the number of trials that it takes until \(j\) distinct outcomes have occurred, and let \(I_{j}\) denote the \(j\) th distinct outcome to occur. (Therefore, outcome \(I_{j}\) first occurs at trial \(\left.T_{j} .\right)\) (a) Argue that the random vectors \(\left(I_{1}, \ldots, I_{m}\right)\) and \(\left(T_{1}, \ldots, T_{m}\right)\) are independent. (b) Define \(X\) by letting \(X=j\) if outcome 0 is the \(j\) th distinct outcome to occur. (Thus, \(I_{X}=0 .\) ) Derive an equation for \(E[N]\) in terms of \(E\left[T_{j}\right], j=1, \ldots, m-1\) by conditioning on \(X\). (c) Determine \(E\left[T_{j}\right], j=1, \ldots, m-1\) Hint: See Exercise 42 of Chapter \(2 .\) (d) Find \(E[N]\).
Two players take turns shooting at a target, with each shot by player \(i\) hitting the target with probability \(p_{i}, i=1,2\). Shooting ends when two consecutive shots hit the target. Let \(\mu_{i}\) denote the mean number of shots taken when player \(i\) shoots first, \(i=1,2\) (a) Find \(\mu_{1}\) and \(\mu_{2}\). (b) Let \(h_{i}\) denote the mean number of times that the target is hit when player \(i\) shoots first, \(i=1,2\). Find \(h_{1}\) and \(h_{2}\).
What do you think about this solution?
We value your feedback to improve our textbook solutions.