Chapter 3: Problem 26
You have two opponents with whom you alternate play. Whenever you play \(A\), you win with probability \(p_{A}\); whenever you play \(B\), you win with probability \(p_{B}\), where \(p_{B}>p_{A}\). If your objective is to minimize the expected number of games you need to play to win two in a row, should you start with \(A\) or with \(B\) ? Hint: Let \(E\left[N_{i}\right]\) denote the mean number of games needed if you initially play \(i\). Derive an expression for \(E\left[N_{A}\right]\) that involves \(E\left[N_{B}\right] ;\) write down the equivalent expression for \(E\left[N_{B}\right]\) and then subtract.