Chapter 3: Problem 17
Let \(Y\) be a gamma random variable with parameters \((s, \alpha) .\) That is, its density is $$ f_{Y}(y)=C e^{-\alpha y} y^{s-1}, \quad y>0 $$ where \(C\) is a constant that does not depend on \(y .\) Suppose also that the conditional distribution of \(X\) given that \(Y=y\) is Poisson with mean \(y\). That is, $$ P\\{X=i \mid Y=y\\}=e^{-y} y^{i} / i !, \quad i \geqslant 0 $$ Show that the conditional distribution of \(Y\) given that \(X=i\) is the gamma distribution with parameters (s \(+i, \alpha+1\) ).