Chapter 3: Problem 16
The random variables \(X\) and \(Y\) are said to have a bivariate normal
distribution if their joint density function is given by
$$
\begin{aligned}
f(x, y)=& \frac{1}{2 \pi \sigma_{x} \sigma_{y} \sqrt{1-\rho^{2}}} \exp
\left\\{-\frac{1}{2\left(1-\rho^{2}\right)}\right.\\\
&\left.\times\left[\left(\frac{x-\mu_{x}}{\sigma_{x}}\right)^{2}-\frac{2
\rho\left(x-\mu_{x}\right)\left(y-\mu_{y}\right)}{\sigma_{x}
\sigma_{y}}+\left(\frac{y-\mu_{y}}{\sigma_{y}}\right)^{2}\right]\right\\}
\end{aligned}
$$
for \(-\infty