Chapter 3: Problem 11
The joint density of \(X\) and \(Y\) is
$$
f(x, y)=\frac{\left(y^{2}-x^{2}\right)}{8} e^{-y}, \quad 0
Chapter 3: Problem 11
The joint density of \(X\) and \(Y\) is
$$
f(x, y)=\frac{\left(y^{2}-x^{2}\right)}{8} e^{-y}, \quad 0
All the tools & learning materials you need for study success - in one app.
Get started for freeLet \(X_{1}\) and \(X_{2}\) be independent geometric random variables having the same parameter \(p\). Guess the value of $$ P\left\\{X_{1}=i \mid X_{1}+X_{2}=n\right\\} $$ Hint: Suppose a coin having probability \(p\) of coming up heads is continually flipped. If the second head occurs on flip number \(n\), what is the conditional probability that the first head was on flip number \(i, i=1, \ldots, n-1 ?\) Verify your guess analytically.
In a knockout tennis tournament of \(2^{n}\) contestants, the players are paired and play a match. The losers depart, the remaining \(2^{n-1}\) players are paired, and they play a match. This continues for \(n\) rounds, after which a single player remains unbeaten and is declared the winner. Suppose that the contestants are numbered 1 through \(2^{n}\), and that whenever two players contest a match, the lower numbered one wins with probability \(p\). Also suppose that the pairings of the remaining players are always done at random so that all possible pairings for that round are equally likely. (a) What is the probability that player 1 wins the tournament? (b) What is the probability that player 2 wins the tournament? Hint: Imagine that the random pairings are done in advance of the tournament. That is, the first-round pairings are randomly determined; the \(2^{n-1}\) first-round pairs are then themselves randomly paired, with the winners of each pair to play in round 2; these \(2^{n-2}\) groupings (of four players each) are then randomly paired, with the winners of each grouping to play in round 3, and so on. Say that players \(i\) and \(j\) are scheduled to meet in round \(k\) if, provided they both win their first \(k-1\) matches, they will meet in round \(k\). Now condition on the round in which players 1 and 2 are scheduled to meet.
If \(X\) and \(Y\) are both discrete, show that \(\sum_{x} p_{X \mid Y}(x \mid y)=1\) for all \(y\) such that \(p_{Y}(y)>0\)
Suppose there are \(n\) types of coupons, and that the type of each new coupon obtained is independent of past selections and is equally likely to be any of the \(n\) types. Suppose one continues collecting until a complete set of at least one of each type is obtained. (a) Find the probability that there is exactly one type \(i\) coupon in the final collection. Hint: Condition on \(T\), the number of types that are collected before the first type \(i\) appears. (b) Find the expected number of types that appear exactly once in the final collection.
An urn contains three white, six red, and five black balls. Six of these balls are randomly selected from the urn. Let \(X\) and \(Y\) denote respectively the number of white and black balls selected. Compute the conditional probability mass function of \(X\) given that \(Y=3\). Also compute \(E[X \mid Y=1]\).
What do you think about this solution?
We value your feedback to improve our textbook solutions.