Chapter 2: Problem 59
Let \(X_{1}, X_{2}, X_{3}\), and \(X_{4}\) be independent continuous random
variables with a common distribution function \(F\) and let
$$
p=P\left\\{X_{1}
Chapter 2: Problem 59
Let \(X_{1}, X_{2}, X_{3}\), and \(X_{4}\) be independent continuous random
variables with a common distribution function \(F\) and let
$$
p=P\left\\{X_{1}
All the tools & learning materials you need for study success - in one app.
Get started for freeA coin having probability \(p\) of coming up heads is successively flipped until the \(r\) th head appears. Argue that \(X\), the number of flips required, will be \(n, n \geq r\), with probability $$ P[X=n\\}=\left(\begin{array}{c} n-1 \\ r-1 \end{array}\right) p^{T}(1-p)^{n-r}, \quad n \geq r $$ This is known as the negative binomial distribution. Hint: How many successes must there be in the first \(n-1\) trials?
Suppose that the joint probability mass function of \(X\) and \(Y\) is $$ P(X=i, Y=j)=\left(\begin{array}{l} j \\ i \end{array}\right) e^{-2 \lambda} \lambda^{i} / j !, \quad 0 \leq i \leq j $$ (a) Find the probability mass function of \(Y\). (b) Find the probability mass function of \(X\). (c) Find the probability mass function of \(Y-X\).
If a fair coin is successively flipped, find the probability that a head first appears on the fifth trial.
A coin, having probability \(p\) of landing heads, is flipped until a head appears for the \(r\) th time. Let \(N\) denote the number of flips required. Calculate \(E[N]\). Hint: There is an easy way of doing this. It involves writing \(N\) as the sum of \(r\) geometric random variables.
If \(X\) is uniform over \((0,1)\), calculate \(E\left[X^{n}\right]\) and \(\operatorname{Var}\left(X^{n}\right)\).
What do you think about this solution?
We value your feedback to improve our textbook solutions.