Chapter 2: Problem 54
Let \(X\) and \(Y\) each take on either the value 1 or \(-1\). Let $$ \begin{aligned} p(1,1) &=P\\{X=1, Y=1\\} \\ p(1,-1) &=P[X=1, Y=-1\\} \\ p(-1,1) &=P[X=-1, Y=1\\} \\ p(-1,-1) &=P\\{X=-1, Y=-1\\} \end{aligned} $$ Suppose that \(E[X]=E[Y]=0\). Show that (a) \(p(1,1)=p(-1,-1) ;\) (b) \(p(1,-1)=p(-1,1)\). Let \(p=2 p(1,1) .\) Find (c) \(\operatorname{Var}(X)\); (d) \(\operatorname{Var}(Y)\) (e) \(\operatorname{Cov}(X, Y)\).
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.