Chapter 2: Problem 50
Let \(c\) be a constant. Show that (a) \(\operatorname{Var}(c X)=c^{2} \operatorname{Var}(X)\) (b) \(\operatorname{Var}(c+X)=\operatorname{Var}(X)\).
Chapter 2: Problem 50
Let \(c\) be a constant. Show that (a) \(\operatorname{Var}(c X)=c^{2} \operatorname{Var}(X)\) (b) \(\operatorname{Var}(c+X)=\operatorname{Var}(X)\).
All the tools & learning materials you need for study success - in one app.
Get started for freeLet \(X\) be a random variable with probability density
$$
f(x)=\left\\{\begin{array}{ll}
c\left(1-x^{2}\right), & -1
Suppose that \(X\) and \(Y\) are independent binomial random variables with parameters \((n, p)\) and \((m, p) .\) Argue probabilistically (no computations necessary) that \(X+Y\) is binomial with parameters \((n+m, p)\).
Suppose five fair coins are tossed. Let \(E\) be the event that all coins land heads. Define the random variable \(I_{E}\) $$ I_{E}=\left\\{\begin{array}{ll} 1, & \text { if } E \text { occurs } \\ 0, & \text { if } E^{c} \text { occurs } \end{array}\right. $$ For what outcomes in the original sample space does \(I_{E}\) equal 1? What is \(P\left[I_{E}=1\right\\}\) ?
Compare the Poisson approximation with the correct binomial probability for the following cases: (a) \(P(X=2\\}\) when \(n=8, p=0.1\). (b) \(P[X=9\\}\) when \(n=10, p=0.95\). (c) \(P[X=0\\}\) when \(n=10, p=0.1\). (d) \(P\\{X=4\\}\) when \(n=9, p=0.2\).
Let \(a_{1}
What do you think about this solution?
We value your feedback to improve our textbook solutions.