Chapter 2: Problem 48
If \(X\) is a nonnegative random variable, and \(g\) is a differential function with \(g(0)=0\), then $$ E[g(X)]=\int_{0}^{\infty} P(X>t) g^{\prime}(t) d t $$ Prove the preceding when \(X\) is a continuous random variable.
Chapter 2: Problem 48
If \(X\) is a nonnegative random variable, and \(g\) is a differential function with \(g(0)=0\), then $$ E[g(X)]=\int_{0}^{\infty} P(X>t) g^{\prime}(t) d t $$ Prove the preceding when \(X\) is a continuous random variable.
All the tools & learning materials you need for study success - in one app.
Get started for freeLet \(X\) and \(Y\) each take on either the value 1 or \(-1\). Let $$ \begin{aligned} p(1,1) &=P\\{X=1, Y=1\\} \\ p(1,-1) &=P[X=1, Y=-1\\} \\ p(-1,1) &=P[X=-1, Y=1\\} \\ p(-1,-1) &=P\\{X=-1, Y=-1\\} \end{aligned} $$ Suppose that \(E[X]=E[Y]=0\). Show that (a) \(p(1,1)=p(-1,-1) ;\) (b) \(p(1,-1)=p(-1,1)\). Let \(p=2 p(1,1) .\) Find (c) \(\operatorname{Var}(X)\); (d) \(\operatorname{Var}(Y)\) (e) \(\operatorname{Cov}(X, Y)\).
Calculate the moment generating function of a geometric random variable.
An urn contains \(n+m\) balls, of which \(n\) are red and \(m\) are black. They are withdrawn from the urn, one at a time and without replacement. Let \(X\) be the number of red balls removed before the first black ball is chosen. We are interested in determining \(E[X]\). To obtain this quantity, number the red balls from 1 to \(n\). Now define the random variables \(X_{i}, i=1, \ldots, n\), by \(X_{i}=\left\\{\begin{array}{ll}1, & \text { if red ball } i \text { is taken before any black ball is chosen } \\ 0, & \text { otherwise }\end{array}\right.\) (a) Express \(X\) in terms of the \(X_{i}\). (b) Find \(E[X]\).
If you buy a lottery ticket in 50 lotteries, in each of which your chance of winning a prize is \(\frac{1}{100}\), what is the (approximate) probability that you will win a prize (a) at least once, (b) exactly once, (c) at least twice?
A coin having probability \(p\) of coming up heads is successively flipped until the \(r\) th head appears. Argue that \(X\), the number of flips required, will be \(n, n \geq r\), with probability $$ P[X=n\\}=\left(\begin{array}{c} n-1 \\ r-1 \end{array}\right) p^{T}(1-p)^{n-r}, \quad n \geq r $$ This is known as the negative binomial distribution. Hint: How many successes must there be in the first \(n-1\) trials?
What do you think about this solution?
We value your feedback to improve our textbook solutions.