Chapter 2: Problem 34
Let the probability density of \(X\) be given by
$$
f(x)=\left\\{\begin{array}{ll}
c\left(4 x-2 x^{2}\right), & 0
Chapter 2: Problem 34
Let the probability density of \(X\) be given by
$$
f(x)=\left\\{\begin{array}{ll}
c\left(4 x-2 x^{2}\right), & 0
All the tools & learning materials you need for study success - in one app.
Get started for freeIf \(X\) is a nonnegative random variable, and \(g\) is a differential function with \(g(0)=0\), then $$ E[g(X)]=\int_{0}^{\infty} P(X>t) g^{\prime}(t) d t $$ Prove the preceding when \(X\) is a continuous random variable.
Suppose that two teams are playing a series of games, each of which is independently won by team \(A\) with probability \(p\) and by team \(B\) with probability \(1-p .\) The winner of the series is the first team to win four games. Find the expected number of games that are played, and evaluate this quantity when \(p=1 / 2\).
If \(X\) is a nonnegative integer valued random variable, show that (a) $$ E[X]=\sum_{n=1}^{\infty} P[X \geq n\\}=\sum_{n=0}^{\infty} P(X>n\\} $$ Hint: Define the sequence of random variables \(I_{n}, n \geq 1\), by $$ I_{n}=\left\\{\begin{array}{ll} 1, & \text { if } n \leq X \\ 0, & \text { if } n>X \end{array}\right. $$ Now express \(X\) in terms of the \(I_{n}\). (b) If \(X\) and \(Y\) are both nonnegative integer valued random variables, show that $$ E[X Y]=\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} P(X \geq n, Y \geq m) $$
Let \(X\) denote the number of white balls selected when \(k\) balls are chosen at random from an urn containing \(n\) white and \(m\) black balls. (a) Compute \(P[X=i\\}\). (b) Let, for \(i=1,2, \ldots, k ; j=1,2, \ldots, n\) \(X_{i}=\left\\{\begin{array}{ll}1, & \text { if the } i \text { th ball selected is white } \\ 0, & \text { otherwise }\end{array}\right.\) \(Y_{j}=\left\\{\begin{array}{ll}1, & \text { if white ball } j \text { is selected } \\ 0, & \text { otherwise }\end{array}\right.\) Compute \(E[X]\) in two ways by expressing \(X\) first as a function of the \(X_{i} s\) and then of the \(Y_{j}\) s.
A television store owner figures that 50 percent of the customers entering his store will purchase an ordinary television set, 20 percent will purchase a color television set, and 30 percent will just be browsing. If five customers enter his store on a certain day, what is the probability that two customers purchase color sets, one customer purchases an ordinary set, and two customers purchase nothing?
What do you think about this solution?
We value your feedback to improve our textbook solutions.