Chapter 2: Problem 17
Suppose that an experiment can result in one of \(r\) possible outcomes, the ith outcome having probability \(p_{i}, i=1, \ldots, r, \sum_{i=1}^{r} p_{i}=1 .\) If \(n\) of these experiments are performed, and if the outcome of any one of the \(n\) does not affect the outcome of the other \(n-1\) experiments, then show that the probability that the first outcome appears \(x_{1}\) times, the second \(x_{2}\) times, and the \(r\) th \(x_{r}\) times is $$ \frac{n !}{x_{1} ! x_{2} ! \ldots x_{r} !} p_{1}^{x_{1}} p_{2}^{x_{2}} \cdots p_{r}^{x_{r}} \quad \text { when } x_{1}+x_{2}+\cdots+x_{r}=n $$ This is known as the multinomial distribution.