Chapter 10: Problem 18
Show that \(\\{Y(t), t \geqslant 0\\}\) is a Martingale when $$ Y(t)=B^{2}(t)-t $$ What is \(E[Y(t)] ?\) Hint: First compute \(E[Y(t) \mid B(u), 0 \leqslant u \leqslant s]\).
Chapter 10: Problem 18
Show that \(\\{Y(t), t \geqslant 0\\}\) is a Martingale when $$ Y(t)=B^{2}(t)-t $$ What is \(E[Y(t)] ?\) Hint: First compute \(E[Y(t) \mid B(u), 0 \leqslant u \leqslant s]\).
All the tools & learning materials you need for study success - in one app.
Get started for freeShow that \(\\{Y(t), t \geqslant 0\\}\) is a Martingale when $$ Y(t)=\exp \left\\{c B(t)-c^{2} t / 2\right\\} $$ where \(c\) is an arbitrary constant. What is \(E[Y(t)] ?\) An important property of a Martingale is that if you continually observe the process and then stop at some time \(T\), then, subject to some technical conditions (which will hold in the problems to be considered), $$ E[Y(T)]=E[Y(0)] $$ The time \(T\) usually depends on the values of the process and is known as a stopping time for the Martingale. This result, that the expected value of the stopped Martingale is equal to its fixed time expectation, is known as the Martingale stopping theorem.
Let \(Y(t)=t B(1 / t), t>0\) and \(Y(0)=0\) (a) What is the distribution of \(Y(t)\) ? (b) Compare \(\operatorname{Cov}(Y(s), Y(t))\). (c) Argue that \(\\{Y(t), t \geqslant 0\\}\) is a standard Brownian motion process.
The present price of a stock is 100 . The price at time 1 will be either 50,100 , or 200\. An option to purchase \(y\) shares of the stock at time 1 for the (present value) price \(k y\) costs \(c y\). (a) If \(k=120\), show that an arbitrage opportunity occurs if and only if \(c>80 / 3\). (b) If \(k=80\), show that there is not an arbitrage opportunity if and only if \(20 \leqslant\) \(c \leqslant 40\).
Let \(X(t)=\sigma B(t)+\mu t\), and for given positive constants \(A\) and \(B\), let \(p\) denote the probability that \(\\{X(t), t \geqslant 0\\}\) hits \(A\) before it hits \(-B\). (a) Define the stopping time \(T\) to be the first time the process hits either \(A\) or \(-B\). Use this stopping time and the Martingale defined in Exercise 19 to show that $$ E\left[\exp \left\\{c(X(T)-\mu T) / \sigma-c^{2} T / 2\right\\}\right]=1 $$ (b) Let \(c=-2 \mu / \sigma\), and show that $$ E[\exp \\{-2 \mu X(T) / \sigma\\}]=1 $$ (c) Use part (b) and the definition of \(T\) to find \(p\). Hint: What are the possible values of \(\exp \left\\{-2 \mu X(T) / \sigma^{2}\right\\} ?\)
Show that standard Brownian motion is a Martingale.
What do you think about this solution?
We value your feedback to improve our textbook solutions.