Chapter 1: Problem 9
We say that \(E \subset F\) if every point in \(E\) is also in \(F\). Show that if \(E \subset F\), then $$ P(F)=P(E)+P\left(F E^{c}\right) \geqslant P(E) $$
Chapter 1: Problem 9
We say that \(E \subset F\) if every point in \(E\) is also in \(F\). Show that if \(E \subset F\), then $$ P(F)=P(E)+P\left(F E^{c}\right) \geqslant P(E) $$
All the tools & learning materials you need for study success - in one app.
Get started for freeIf the occurrence of \(B\) makes \(A\) more likely, does the occurrence of \(A\) make \(B\) more likely?
An urn contains \(b\) black balls and \(r\) red balls. One of the balls is drawn at random, but when it is put back in the urn \(c\) additional balls of the same color are put in with it. Now suppose that we draw another ball. Show that the probability that the first ball is drawn was black given that the second ball drawn was red is \(b /(b+r+c)\).
Urn 1 has five white and seven black balls. Urn 2 has three white and twelve black balls. We flip a fair coin. If the outcome is headed, then a ball from urn 1 is selected, while if the outcome is tails, then a ball from urn 2 is selected. Suppose that a white ball is selected. What is the probability that the coin landed tails?
Suppose that \(P(E)=0.6 .\) What can you say about \(P(E \mid F)\) when (a) \(E\) and \(F\) are mutually exclusive? (b) \(E \subset F ?\) (c) \(F \subset E ?\)
Assume that each child who is born is equally likely to be a boy or a girl. If a family has two children, what is the probability that both are girls given that (a) the eldest is a girl, (b) at least one is a girl?
What do you think about this solution?
We value your feedback to improve our textbook solutions.