Chapter 1: Problem 8
If \(P(E)=0.9\) and \(P(F)=0.8\), show that \(P(E F) \geqslant 0.7\). In general, show that $$ P(E F) \geqslant P(E)+P(F)-1 $$ This is known as Bonferroni's inequality.
Chapter 1: Problem 8
If \(P(E)=0.9\) and \(P(F)=0.8\), show that \(P(E F) \geqslant 0.7\). In general, show that $$ P(E F) \geqslant P(E)+P(F)-1 $$ This is known as Bonferroni's inequality.
All the tools & learning materials you need for study success - in one app.
Get started for freeTwo cards are randomly selected from a deck of 52 playing cards. (a) What is the probability they constitute a pair (that is, that they are of the same denomination)? (b) What is the conditional probability they constitute a pair given that they are of different suits?
Let \(E\) and \(F\) be mutually exclusive events in the sample space of an experiment. Suppose that the experiment is repeated until either event \(E\) or event \(F\) occurs. What does the sample space of this new super experiment look like? Show that the probability that event \(E\) occurs before event \(F\) is \(P(E) /[P(E)+P(F)]\). Hint: Argue that the probability that the original experiment is performed \(n\) times and \(E\) appears on the \(n\) th time is \(P(E) \times(1-p)^{n-1}, n=1,2, \ldots\), where \(p=P(E)+\) \(P(F)\). Add these probabilities to get the desired answer.
An urn contains \(b\) black balls and \(r\) red balls. One of the balls is drawn at random, but when it is put back in the urn \(c\) additional balls of the same color are put in with it. Now suppose that we draw another ball. Show that the probability that the first ball is drawn was black given that the second ball drawn was red is \(b /(b+r+c)\).
Suppose that 5 percent of men and \(0.25\) percent of women are color-blind. A colorblind person is chosen at random. What is the probability of this person being male? Assume that there is an equal number of males and females.
Show that $$ P\left(\bigcup_{i=1}^{n} E_{i}\right) \leqslant \sum_{i=1}^{n} P\left(E_{i}\right) $$ This is known as Boole's inequality. Hint: Either use Equation (1.2) and mathematical induction, or else show that \(\bigcup_{i=1}^{n} E_{i}=\bigcup_{i=1}^{n} F_{i}\), where \(F_{1}=E_{1}, F_{i}=E_{i} \bigcap_{j=1}^{i-1} E_{j}^{c}\), and use property (iii) of a probability.
What do you think about this solution?
We value your feedback to improve our textbook solutions.