Chapter 1: Problem 31
What is the conditional probability that the first die is six given that the sum of the dice is seven?
Chapter 1: Problem 31
What is the conditional probability that the first die is six given that the sum of the dice is seven?
All the tools & learning materials you need for study success - in one app.
Get started for freeIn a class there are four freshman boys, six freshman girls, and six sophomore boys. How many sophomore girls must be present if sex and class are to be independent when a student is selected at random?
An individual uses the following gambling system at Las Vegas. He bets \(\$ 1\) that the roulette wheel will come up red. If he wins, he quits. If he loses then he makes the same bet a second time only this time he bets \(\$ 2\); and then regardless of the outcome, quits. Assuming that he has a probability of \(\frac{1}{2}\) of winning each bet, what is the probability that he goes home a winner? Why is this system not used by everyone?
An urn contains \(b\) black balls and \(r\) red balls. One of the balls is drawn at random, but when it is put back in the urn \(c\) additional balls of the same color are put in with it. Now suppose that we draw another ball. Show that the probability that the first ball is drawn was black given that the second ball drawn was red is \(b /(b+r+c)\).
(a) A gambler has in his pocket a fair coin and a two-headed coin. He selects one of the coins at random, and when he flips it, it shows heads. What is the probability that it is a fair coin? (b) Suppose that he flips the same coin a second time and again it shows heads. Now, what is the probability that it is a fair coin? (c) Suppose that he flips the same coin a third time and it shows tails. Now, what is the probability that it is a fair coin?
Two cards are randomly selected from a deck of 52 playing cards. (a) What is the probability they constitute a pair (that is, that they are of the same denomination)? (b) What is the conditional probability they constitute a pair given that they are of different suits?
What do you think about this solution?
We value your feedback to improve our textbook solutions.