Chapter 1: Problem 16
Use Exercise 15 to show that \(P(E \cup F)=P(E)+P(F)-P(E F)\).
Chapter 1: Problem 16
Use Exercise 15 to show that \(P(E \cup F)=P(E)+P(F)-P(E F)\).
All the tools & learning materials you need for study success - in one app.
Get started for freeSuppose all \(n\) men at a party throw their hats in the center of the room. Each man then randomly selects a hat. Show that the probability that none of the \(n\) men selects his own hat is $$ \frac{1}{2 !}-\frac{1}{3 !}+\frac{1}{4 !}-+\cdots \frac{(-1)^{n}}{n !} $$ Note that as \(n \rightarrow \infty\) this converges to \(e^{-1}\). Is this surprising?
An urn contains \(b\) black balls and \(r\) red balls. One of the balls is drawn at random, but when it is put back in the urn \(c\) additional balls of the same color are put in with it. Now suppose that we draw another ball. Show that the probability that the first ball is drawn was black given that the second ball drawn was red is \(b /(b+r+c)\).
Suppose that \(P(E)=0.6 .\) What can you say about \(P(E \mid F)\) when (a) \(E\) and \(F\) are mutually exclusive? (b) \(E \subset F ?\) (c) \(F \subset E ?\)
For a fixed event \(B\), show that the collection \(P(A \mid B)\), defined for all events \(A\), satisfies the three conditions for a probability. Conclude from this that $$ P(A \mid B)=P(A \mid B C) P(C \mid B)+P\left(A \mid B C^{c}\right) P\left(C^{C} \mid B\right) $$ Then directly verify the preceding equation.
An individual uses the following gambling system at Las Vegas. He bets \(\$ 1\) that the roulette wheel will come up red. If he wins, he quits. If he loses then he makes the same bet a second time only this time he bets \(\$ 2\); and then regardless of the outcome, quits. Assuming that he has a probability of \(\frac{1}{2}\) of winning each bet, what is the probability that he goes home a winner? Why is this system not used by everyone?
What do you think about this solution?
We value your feedback to improve our textbook solutions.