Chapter 1: Problem 15
Argue that \(E=E F \cup E F^{c}, E \cup F=E \cup F E^{c}\).
Chapter 1: Problem 15
Argue that \(E=E F \cup E F^{c}, E \cup F=E \cup F E^{c}\).
All the tools & learning materials you need for study success - in one app.
Get started for freeIf \(P(E)=0.9\) and \(P(F)=0.8\), show that \(P(E F) \geqslant 0.7\). In general, show that $$ P(E F) \geqslant P(E)+P(F)-1 $$ This is known as Bonferroni's inequality.
Use Exercise 15 to show that \(P(E \cup F)=P(E)+P(F)-P(E F)\).
Show that $$ P\left(\bigcup_{i=1}^{n} E_{i}\right) \leqslant \sum_{i=1}^{n} P\left(E_{i}\right) $$ This is known as Boole's inequality. Hint: Either use Equation (1.2) and mathematical induction, or else show that \(\bigcup_{i=1}^{n} E_{i}=\bigcup_{i=1}^{n} F_{i}\), where \(F_{1}=E_{1}, F_{i}=E_{i} \bigcap_{j=1}^{i-1} E_{j}^{c}\), and use property (iii) of a probability.
Let \(E, F, G\) be three events. Find expressions for the events that of \(E, F, G\) (a) only \(F\) occurs, (b) both \(E\) and \(F\) but not \(G\) occur, (c) at least one event occurs, (d) at least two events occur, (e) all three events occur, (f) none occurs, (g) at most one occurs, (h) at most two occur.
Suppose each of three persons tosses a coin. If the outcome of one of the tosses differs from the other outcomes, then the game ends. If not, then the persons start over and retoss their coins. Assuming fair coins, what is the probability that the game will end with the first round of tosses? If all three coins are biased and have probability \(\frac{1}{4}\) of landing heads, what is the probability that the game will end at the first round?
What do you think about this solution?
We value your feedback to improve our textbook solutions.