Chapter 7: Problem 23
Find the general solution of each of the linear systems in Exercises 1-26. $$ \begin{aligned} &x^{\prime}=3 x-y \\ &y^{\prime}=x+y \end{aligned} $$
Short Answer
Expert verified
The general solution to the linear system of differential equations is given by:
\[
\begin{pmatrix} x(t)\\y(t)\end{pmatrix} = c_1 e^t \begin{pmatrix} 1\\ 2 \end{pmatrix} + c_2 e^{3t} \begin{pmatrix} 1\\ 1\end{pmatrix}
\]
Step by step solution
01
Write the system in matrix form
Write the given system of linear differential equations in matrix form, such that $$\begin{pmatrix} x' \\ y' \end{pmatrix} = A \begin{pmatrix} x \\ y \end{pmatrix}$$, where A is the matrix of coefficients. This gives us:
\[
\begin{pmatrix}
x' \\
y'
\end{pmatrix}
=
\begin{pmatrix}
3 & -1 \\
1 & 1
\end{pmatrix}
\begin{pmatrix}
x \\
y
\end{pmatrix}
\]
02
Find eigenvalues and eigenvectors
Compute the eigenvalues and eigenvectors for the matrix A. To find the eigenvalues, solve the characteristic equation, which is given by $$\text{det}(A-\lambda I) = 0$$.
\[
\begin{vmatrix}
3-\lambda & -1 \\
1 &1-\lambda
\end{vmatrix}
= (3-\lambda)(1-\lambda) - (-1)(1) = \lambda^2 - 4\lambda + 4 -1 = \lambda^2 -4\lambda +3
\]
The characteristic equation becomes $$\lambda^2 -4\lambda +3 = 0$$. To find its roots, we factor it: $$(\lambda-1)(\lambda-3)=0$$. Hence, the eigenvalues are 1 and 3.
Now, we will find the eigenvectors associated with each eigenvalue. For $$\lambda_1=1$$, we have:
\[
(A-\lambda_1 I) \begin{pmatrix} x_1 \\ y_1 \end{pmatrix} = \begin{pmatrix} 2 & -1 \\ 1 & 0\end{pmatrix} \begin{pmatrix} x_1 \\ y_1 \end{pmatrix} = \begin{pmatrix} 0\\ 0\end{pmatrix}
\]
The eigenvector corresponding to eigenvalue 1 is \(\begin{pmatrix} 1 \\ 2 \end{pmatrix}\).
For $$\lambda_2=3$$, we have:
\[
(A-\lambda_2 I) \begin{pmatrix} x_2 \\ y_2 \end{pmatrix} = \begin{pmatrix} 0 & -1 \\ 1 & -2\end{pmatrix} \begin{pmatrix} x_2 \\ y_2 \end{pmatrix} = \begin{pmatrix} 0\\ 0\end{pmatrix}
\]
The eigenvector corresponding to eigenvalue 3 is \(\begin{pmatrix} 1 \\ 1 \end{pmatrix}\).
03
Express the general solution
Express the general solution using the eigenvalues and eigenvectors found in the previous step. The general solution to a system of linear differential equations is given by:
$$\begin{pmatrix} x(t)\\y(t)\end{pmatrix} = c_1 e^{\lambda_1 t} \begin{pmatrix} x_1\\ y_1 \end{pmatrix} + c_2 e^{\lambda_2 t} \begin{pmatrix} x_2\\ y_2 \end{pmatrix}$$
Substituting the eigenvalues and eigenvectors, we obtain:
$$\begin{pmatrix} x(t)\\y(t)\end{pmatrix} = c_1 e^{1\cdot t} \begin{pmatrix} 1\\ 2 \end{pmatrix} + c_2 e^{3\cdot t} \begin{pmatrix} 1\\ 1\end{pmatrix}$$
Thus, the general solution to the linear system of differential equations is given by:
$$\begin{pmatrix} x(t)\\y(t)\end{pmatrix} = c_1 e^t \begin{pmatrix} 1\\ 2 \end{pmatrix} + c_2 e^{3t} \begin{pmatrix} 1\\ 1\end{pmatrix}$$
Unlock Step-by-Step Solutions & Ace Your Exams!
-
Full Textbook Solutions
Get detailed explanations and key concepts
-
Unlimited Al creation
Al flashcards, explanations, exams and more...
-
Ads-free access
To over 500 millions flashcards
-
Money-back guarantee
We refund you if you fail your exam.
Over 30 million students worldwide already upgrade their learning with Vaia!
Key Concepts
These are the key concepts you need to understand to accurately answer the question.
Eigenvalues
Eigenvalues are key to solving linear differential equations involving matrices. To find eigenvalues, solve the characteristic equation \( \text{det}(A - \lambda I) = 0 \). Here, \( A \) is a matrix and \( I \) is the identity matrix of the same size. Solving the determinant gives a polynomial equation in terms of \( \lambda \), the eigenvalue. For the system \[ \begin{pmatrix} 3 & -1 \ 1 & 1 \end{pmatrix} \], the characteristic equation \( \lambda^2 - 4\lambda + 3 = 0 \) yields eigenvalues \( \lambda_1 = 1 \) and \( \lambda_2 = 3 \). These values are crucial in finding specific solutions that simplify the differential system.
Eigenvectors
Once eigenvalues are determined, eigenvectors are needed to fully describe the solution to the differential equation. Eigenvectors work as direction indicators associated with each eigenvalue. For each eigenvalue \( \lambda \), solve \( (A - \lambda I) \mathbf{v} = \mathbf{0} \), where \( \mathbf{v} \) is an eigenvector. For \( \lambda_1 = 1 \), solve \( \begin{pmatrix} 2 & -1 \ 1 & 0 \end{pmatrix} \begin{pmatrix} x_1 \ y_1 \end{pmatrix} = \begin{pmatrix} 0 \ 0 \end{pmatrix} \). The corresponding eigenvector is \( \begin{pmatrix} 1 \ 2 \end{pmatrix} \). For \( \lambda_2 = 3 \), using \( \begin{pmatrix} 0 & -1 \ 1 & -2 \end{pmatrix} \), the eigenvector is \( \begin{pmatrix} 1 \ 1 \end{pmatrix} \). This process connects each eigenvalue to its respective solution path.
Matrix Form
The matrix form of a linear system streamlines the process of solving differential equations. Representing the system \( x' = 3x - y \) and \( y' = x + y \) in matrix form, you have \[ \begin{pmatrix} x' \ y' \end{pmatrix} = \begin{pmatrix} 3 & -1 \ 1 & 1 \end{pmatrix} \begin{pmatrix} x \ y \end{pmatrix} \]. This compact representation allows us to utilize linear algebra techniques, simplifying the task of finding solutions using eigenvalues and eigenvectors. Each column of the matrix indicates the coefficient of the variables (\( x \) and \( y \)), making the transition from equations to a matrix straightforward and efficient for computations.
General Solution
The general solution to the differential system is built from the eigenvalues and eigenvectors we previously found. Using \( \begin{pmatrix} x(t) \ y(t) \end{pmatrix} = c_1 e^{\lambda_1 t} \begin{pmatrix} x_1 \ y_1 \end{pmatrix} + c_2 e^{\lambda_2 t} \begin{pmatrix} x_2 \ y_2 \end{pmatrix} \), substitute \( \lambda_1 = 1 \), \( \lambda_2 = 3 \), and their corresponding eigenvectors. The resulting general solution is \[ \begin{pmatrix} x(t) \ y(t) \end{pmatrix} = c_1 e^t \begin{pmatrix} 1 \ 2 \end{pmatrix} + c_2 e^{3t} \begin{pmatrix} 1 \ 1 \end{pmatrix} \]. This solution incorporates constants \( c_1 \) and \( c_2 \), representing initial conditions and the influence of each eigencomponent over time.