Chapter 5: Problem 8
A circuit has in series an electromotive force given by \(E(t)=E_{0} \sin \omega t \mathrm{~V}\), a resistor of \(R \Omega\), an inductor of \(L\) H, and a capacitor of \(C\) farads. (a) Show that the steady-state current is $$ i=\frac{E_{0}}{Z}\left(\frac{R}{Z} \sin \omega t-\frac{X}{Z} \cos \omega t\right) $$ where \(X=L \omega-1 / C \omega\) and \(Z=\sqrt{X^{2}+R^{2}}\). The quantity \(X\) is called the reactance of the circuit and \(Z\) is called the impedance. (b) Using the result of part (a) show that the steady-state current may be written $$ i=\frac{E_{0}}{Z} \sin (\omega t-\phi) $$ where \(\phi\) is determined by the equations $$ \cos \phi=\frac{R}{Z}, \quad \sin \phi=\frac{X}{Z} $$ Thus show that the steady-state current attains its maximum absolute value \(E_{0} / Z\) at times \(t_{n}+\phi / \omega\), where $$ t_{n}=\frac{1}{\omega}\left[\frac{(2 n-1) \pi}{2}\right] \quad(n=1,2,3, \ldots) $$ are the times at which the electromotive force attains its maximum absolute value \(E_{0}\). (c) Show that the amplitude of the steady-state current is a maximum when $$ \omega=\frac{1}{\sqrt{L C}} $$ For this value of \(\omega\) electrical resonance is said to occur. (d) If \(R=20, L=\frac{1}{4}, C=10^{-4}\), and \(E_{0}=100\), find the value of \(\omega\) that gives rise to electrical resonance and determine the amplitude of the steady-state current in this case.
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.