Chapter 5: Problem 10
A 16 -lb weight is attached to the lower end of a coil spring that is suspended vertically from a support and for which the spring constant \(k\) is \(10 \mathrm{lb} / \mathrm{ft}\). The weight comes to rest in its equilibrium position and is then pulled down 6 in. below this position and released at \(t=0 .\) At this instant the support of the spring begins a vertical oscillation such that its distance from its initial position is given by \(\frac{1}{2} \sin 2 t\) for \(t \geq 0\). The resistance of the medium in pounds is numerically equal to \(2 x^{\prime}\), where \(x^{\prime}\) is the instantaneous velocity of the moving weight in feet per second. (a) Show that the differential equation for the displacement of the weight from its equilibrium position is $$ \frac{1}{2} x^{\prime \prime}=-10(x-y)-2 x^{\prime}, \quad \text { where } y=\frac{1}{2} \sin 2 t $$ and hence that this differential equation may be written $$ x^{\prime \prime}+4 x^{\prime}+20 x=10 \sin 2 t $$ (b) Solve the differential equation obtained in step (a), apply the relevant initial conditions, and thus obtain the displacement \(x\) as a function of time.
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.