Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

A student goes to the library. Let events B = the student checks out a book and D = the student checks out a DVD. Suppose that P(B) = 0.40, P(D) = 0.30 and P(B AND D) = 0.20.

a. Find P(B|D).

b. Find P(D|B).

c. Are B and D independent?

d. Are B and D mutually exclusive?

Short Answer

Expert verified

a] P(B|D) = 0.66 ; b] P(D|B) = 0.5 ; c] No, B & D are not independent ; D] No, B & D are not mutually exclusive

Step by step solution

01

Probability 

A] P(B|D) = Pr (Student B checks out a book, given he checks out a DVD)

= P (B & D) / P (D) = P (B & D) / P (D) = 0.20 / 0.30 = 0.66

B] P(D|B) = Pr (Student B checks out a DVD, given he checks out a book)

= P (B & D) / P (B) = P (B & D) / P (B) = 0.20 / 0.40 = 0.5

02

Mutually Exclusiveness & Independence Concepts 

  • Mutually Exclusive events are those, which cannot happen simultaneously, like a coin tossed once can't get both head & tail.

As student can check out both a book & a DVD, so event B & D are not mutually exclusive.

  • Independent Events are those, whose occurrence of one event doesn't effect occurrence of other event. In case of such events, Pr (A & B) = Pr (A) x Pr (B)

As Pr (B & D) ie looking both book & DVD is not = P (B) P (D) , as 0.40 x 0.30 ≠ 0.20

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In a bag, there are six red marbles and four green marbles. The red marbles are marked with the numbers 1, 2, 3,4, 5, and 6. The green marbles are marked with the numbers 1, 2, 3, and 4.

• R = a red marble

• G = a green marble

• O = an odd-numbered marble

• The sample space is S = {R1, R2, R3, R4, R5, R6, G1, G2, G3, G4}.

S has ten outcomes. What is P(G AND O)?

Use the following information to answer the next three exercises. The casino game, roulette, allows the gambler to bet on the probability of a ball, which spins in the roulette wheel, landing on a particular color, number, or range of numbers. The table used to place bets contains of 38numbers, and each number is assigned to a color and a range.

a. List the sample space of the 38possible outcomes in roulette.

b. You bet on red. Find P(red).

c. You bet on -1st12- (1st Dozen). Find P1st12.

d. You bet on an even number. Find P(even number).

e. Is getting an odd number the complement of getting an even number? Why?

f. Find two mutually exclusive events.

g. Are the events Even and 1stDozen independent?

Use the following information to answer the next ten exercises. Forty-eight percent of all Californians registered voters prefer life in prison without parole over the death penalty for a person convicted of first degree murder. Among Latino California registered voters, 55%prefer life in prison without parole over the death penalty for a person convicted of first degree murder. 37.6%of all Californians are Latino. In this problem, let: • C = Californians (registered voters) preferring life in prison without parole over the death penalty for a person convicted of first degree murder. L = Latino Californians. Suppose that one Californian is randomly selected.

Find P(L).

Complete the table using the data provided. Suppose that one person from the study is randomly selected. Find the probability that person smoked 11to20cigarettes per day.

Use the following information to answer the next three exercises. The casino game, roulette, allows the gambler to bet on the probability of a ball, which spins in the roulette wheel, landing on a particular color, number, or range of numbers. The table used to place bets contains of 38numbers, and each number is assigned to a color and a range.

Compute the probability of winning the following types of bets:

a. Betting on a color

b. Betting on one of the dozen groups

c. Betting on the range of numbers from 1to18

d. Betting on the range of numbers19-36

e. Betting on one of the columns

f. Betting on an even or odd number (excluding zero)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free