Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Find the probability that a physics major will do post-graduate research for at most three years. P(x3) = _______

Short Answer

Expert verified

The probability that a physics major will do post-graduate research for at most three years is:

P(x3)=0.70

Step by step solution

01

Given Information

A physics teacher wants to know what percentage of physics students will undertake post-graduate research in the coming years. He has the probability distribution supplied to him.

02

Concept Used

The probabilities of Xtaking different values can be summed as they are mutually exclusive events.

03

Calculation & Explanation

From the above table, probability that a Physics major will do post-graduate research for at most 3years that is: P(X3)is

P(1)+P(2)+P(3)=0.35+0.20+0.15=0.70

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

The chance of an IRS audit for a tax return with over \(25,000in income is about 2%per year. Suppose that 100people

with tax returns over \)25,000are randomly picked. We are interested in the number of people audited in one year. Use a

Poisson distribution to anwer the following questions.

a. In words, define the random variableX.

b. List the values that Xmay take on.

c. Give the distribution ofX.X~_____(_____,_____)

d. How many are expected to be audited?

e. Find the probability that no one was audited.

f. Find the probability that at least three were audited.

X ~ _____(_____,_____)

According to a recent Pew Research poll, 75% of millenials (people born between 1981 and 1995) have a profile on a social networking site. Let X = the number of millenials you ask until you find a person without a profile on a social networking site.

a. Describe the distribution of X.

b. Find the (i) mean and (ii) standard deviation of X.

c. What is the probability that you must ask ten people to find one person without a social networking site?

d. What is the probability that you must ask 20 people to find one person without a social networking site?

e. What is the probability that you must ask at most five people?

More than 96 percent of the very largest colleges and universities (more than 15,000 total enrollments) have some online offerings. Suppose you randomly pick 13 such institutions. We are interested in the number that offer distance learning courses.

a. In words, define the random variable X.

b. List the values that X may take on.

c. Give the distribution of X. X ~ _____(_____,_____)

d. On average, how many schools would you expect to offer such courses?

e. Find the probability that at most ten offer such courses.

f. Is it more likely that 12 or that 13 will offer such courses? Use numbers to justify your answer numerically and answer in a complete sentence.

A palette has 200 milk cartons. Of the 200 cartons, it is known that ten of them have leaked and cannot be sold. A stock clerk randomly chooses 18 for inspection. He wants to know the probability that among the 18, no more than two are leaking. Give five reasons why this is a hypergeometric problem.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free