Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Use the following information to answer the next six exercises: On average, a clothing store gets 120customers per day.

What is the probability of getting 150customers in one day?

Short Answer

Expert verified

The probability of getting150customers in one day at the clothing store is 0.001

Step by step solution

01

Concept used

The conditions for astatistical distribution are:
i.the amount of trials, nis incredibly large, and
ii. The probability of success, pis extremely small.
such that npcould be a finite quantity.
Thus, the probability of xsuccesses is given by:
P(X=x)=e-λλxx!;x=0,1,2,&λ>0
where λis that the mean of the distribution.

02

Given

On an average 120customers arrive at the store per day.

03

Calculation 

The random variable Xfollows the Poisson distribution with parameter λ(X~P(λ))as it satisfies all the condition for a Poisson distribution.

Thus, the required probability is given by,

P(X=150)=0.001. (Since the value of λis very large, this probability can only be calculated using a computer or a calculator).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A theater group holds a fund-raiser. It sells 100 raffle tickets for \(5 apiece. Suppose you purchase four tickets. The prize is two passes to a Broadway show, worth a total of \)150.

a. What are you interested in here?

b. In words, define the random variable X.

c. List the values that X may take on.

d. Construct a PDF.

e. If this fund-raiser is repeated often and you always purchase four tickets, what would be your expected average winnings per raffle?

There are two similar games played for Chinese New Year and Vietnamese New Year. In the Chinese version, fair dice with numbers 1, 2, 3, 4, 5, and 6 are used, along with a board with those numbers. In the Vietnamese version, fair dice with pictures of a gourd, fish, rooster, crab, crayfish, and deer are used. The board has those six objects on it, also. We will play with bets being \(1. The player places a bet on a number or object. The “house” rolls three dice. If none of the dice show the number or object that was bet, the house keeps the \)1 bet. If one of the dice shows the number or object bet (and the other two do not show it), the player gets back his or her \(1 bet, plus \)1 profit. If two of the dice show the number or object bet (and the third die does not show it), the player gets back his or her \(1 bet, plus \)2 profit. If all three dice show the number or object bet, the player gets back his or her \(1 bet, plus \)3 profit. Let X = number of matches and Y = profit per game.

a. In words, define the random variable X.

b. List the values that X may take on.

c. Give the distribution of X. X ~ _____(_____,_____)

d. List the values that Y may take on. Then, construct one PDF table that includes both X and Y and their probabilities.

e. Calculate the average expected matches over the long run of playing this game for the player.

f. Calculate the average expected earnings over the long run of playing this game for the player

g. Determine who has the advantage, the player or the house.

On May 11, 2013 at 9:30 PM, the probability that moderate seismic activity (one moderate earthquake) would occur in the next 48hours in Japan was about 1.08%. As in Example 4.8, you bet that a moderate earthquake will occur in Japan during this period. If you win the bet, you win \(100. If you lose the bet, you pay\)10. Let X = the amount of profit from a bet. Find the mean and standard deviation of X.

More than 96 percent of the very largest colleges and universities (more than 15,000 total enrollments) have some online offerings. Suppose you randomly pick 13 such institutions. We are interested in the number that offer distance learning courses.

a. In words, define the random variable X.

b. List the values that X may take on.

c. Give the distribution of X. X ~ _____(_____,_____)

d. On average, how many schools would you expect to offer such courses?

e. Find the probability that at most ten offer such courses.

f. Is it more likely that 12 or that 13 will offer such courses? Use numbers to justify your answer numerically and answer in a complete sentence.

A group of Martial Arts students is planning on participating in an upcoming demonstration. Six are students of Tae Kwon Do; seven are students of Shotokan Karate. Suppose that eight students are randomly picked to be in the first demonstration. We are interested in the number of Shotokan Karate students in that first demonstration.

a. In words, define the random variable X.

b. List the values that X may take on.

c. Give the distribution of X. X ~ _____(_____,_____)

d. How many Shotokan Karate students do we expect to be in that first demonstration?

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free