Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Atlanta’s Hartsfield-Jackson International Airport is the busiest airport in the world. On average there are 2,500 arrivals and departures each day.

a. How many airplanes arrive and depart the airport per hour?

b. What is the probability that there are exactly 100 arrivals and departures in one hour?

c. What is the probability that there are at most 100 arrivals and departures in one hour?

Short Answer

Expert verified

a. The average number of texts received per hour is250024104.167.

b.poissonpdf(104.167,100)=0.03663

c.1- poissoncdf(104.167,100)10.36505=0.63495

Step by step solution

01

Given information

Atlanta’s Hartsfield-Jackson International Airport is the busiest airport in the world. On average there are 2,500 arrivals and departures each day.

02

Explanation (part a)

the probability that there are exactly 100 arrivals and departures in one hour 250024104.167.

03

Explanation (part  b)

the probability that a text message user receives or sends two messages per hour X~P(104.167), so

P(x=100)=poissonpdf(104.167,100)0.03663

04

Explanation (part c)

the probability that there are at most 100 arrivals and departures in one hour P(x>100)=1P(x100)=1poissoncdf(104.167,100)10.36505=0.63495

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

According to a Gallup poll, 60% of American adults prefer saving over spending. Let X = the number of American adults out of a random sample of 50 who prefer saving to spending.

a. What is the probability distribution for X?

b. Use your calculator to find the following probabilities:

i. the probability that 25 adults in the sample prefer saving over spending

ii. the probability that at most 20 adults prefer saving

iii. the probability that more than 30 adults prefer saving

c. Using the formulas, calculate the

(i) mean and

(ii) standard deviation of X.

According to a recent Pew Research poll, 75% of millenials (people born between 1981 and 1995) have a profile on a social networking site. Let X = the number of millenials you ask until you find a person without a profile on a social networking site.

a. Describe the distribution of X.

b. Find the (i) mean and (ii) standard deviation of X.

c. What is the probability that you must ask ten people to find one person without a social networking site?

d. What is the probability that you must ask 20 people to find one person without a social networking site?

e. What is the probability that you must ask at most five people?

Jeremiah has basketball practice two days a week. Ninety percent of the time, he attends both practices. Eight percent of the time, he attends one practice. Two percent of the time, he does not attend either practice. What is X and what values does it take on?

Is it likely that there will be no teens killed from motor vehicle injuries on any given day in the U.S? Justify your answer numerically

It has been estimated that only about 30% of California residents have adequate earthquake supplies. Suppose we are interested in the number of California residents we must survey until we find a resident who does not have adequate earthquake supplies.

a. In words, define the random variable X.

b. List the values that X may take on.

c. Give the distribution of X. X ~ _____(_____,_____)

d. What is the probability that we must survey just one or two residents until we find a California resident who does not have adequate earthquake supplies?

e. What is the probability that we must survey at least three California residents until we find a California resident who does not have adequate earthquake supplies?

f. How many California residents do you expect to need to survey until you find a California resident who does not have adequate earthquake supplies?

g. How many California residents do you expect to need to survey until you find a California resident who does have adequate earthquake supplies?

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free