Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

The World Bank records the prevalence of HIV in countries around the world. According to their data, “Prevalence of HIV refers to the percentage of people ages 15 to 49 who are infected with HIV.”[1] In South Africa, the prevalence of HIV is 17.3%. Let X = the number of people you test until you find a person infected with HIV.

a. Sketch a graph of the distribution of the discrete random variable X.

b. What is the probability that you must test 30 people to find one with HIV?

c. What is the probability that you must ask ten people?

d. Find the

(i) mean and

(ii) standard deviation of the distribution of X.

Short Answer

Expert verified

a. The graphic presentation is

b. The probability that we must test 30 people to find one with HIV is 0.0007

c. The probability that we must ask ten people 0.0313

d mean is5.7803and standard deviation is5.2566

Step by step solution

01

Content Introduction

In a Bernoulli trial, the likelihood of the number of successive failures before a success is obtained is represented by a geometric distribution, which is a sort of discrete probability distribution. A Bernoulli trial is a test that can only have one of two outcomes: success or failure.

02

Explanation (part a)

Variable X has a geometric distribution with the probability of success 0.173.

Therefore, the graphic presentation is as follow:

03

Explanation (part b)

The probability that we need to test 30 people to find one with HIV is calculated as:

P(X=30)=(1-0.173)x-1×0.173P(X=30)=(0.827)29(0.173)P(X=30)=0.0007

04

Explanation (part c)

The probability that we must ask ten people is as follow:

P(X=10)=(1-0.173)n-1(0.173)P(X=10)=(0.827)9(0.173)P(X=10)=0.0313

05

Explanation (part d)

The mean of the variable with geometric distribution with parameter p=0.173

Mean=1p

Mean=10.173Mean=5.7803

Standard deviation is δ=1-pp2wherep=0.173

δ=1-pp2δ=1-0.173(0.173)2δ=5.2566

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Use the following information to answer the next six exercises: On average, a clothing store gets 120customers per day.

Which type of distribution can the Poisson model be used to approximate? When would you do this?

Use the following information to answer the next six exercises: On average, a clothing store gets120 customers per day.

What is the probability that the store will have fewer than 12customers in the first two hours?

On average, Pierre, an amateur chef, drops three pieces of egg shell into every two cake batters he makes. Suppose

that you buy one of his cakes.

a. In words, define the random variable X.

b. List the values that Xmay take on.

c. Give the distribution ofX.X~_____(_____,_____)

d. On average, how many pieces of egg shell do you expect to be in the cake?

e. What is the probability that there will not be any pieces of egg shell in the cake?

f. Let’s say that you buy one of Pierre’s cakes each week for six weeks. What is the probability that there will not

be any egg shell in any of the cakes?

g. Based upon the average given for Pierre, is it possible for there to be seven pieces of shell in the cake? Why?

A theater group holds a fund-raiser. It sells 100 raffle tickets for \(5 apiece. Suppose you purchase four tickets. The prize is two passes to a Broadway show, worth a total of \)150.

a. What are you interested in here?

b. In words, define the random variable X.

c. List the values that X may take on.

d. Construct a PDF.

e. If this fund-raiser is repeated often and you always purchase four tickets, what would be your expected average winnings per raffle?

It has been estimated that only about 30% of California residents have adequate earthquake supplies. Suppose you randomly survey 11 California residents. We are interested in the number who have adequate earthquake supplies.

a. In words, define the random variable X.

b. List the values that X may take on.

c. Give the distribution of X. X ~ _____(_____,_____)

d. What is the probability that at least eight have adequate earthquake supplies?

e. Is it more likely that none or that all of the residents surveyed will have adequate earthquake supplies? Why?

f. How many residents do you expect will have adequate earthquake supplies?

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free