Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

An Associated Press article on potential violent behavior reported the results of a survey of 750 workers who were employed full time (San Luis Obispo Tribune, September 7,1999 ). Of those surveyed, 125 indicated that they were so angered by a coworker during the past year that they felt like hitting the coworker (but didn't). Assuming that it is reasonable to regard this sample of 750 as a random sample from the population of full-time workers, use this information to construct and interpret a \(90 \%\) confidence interval estimate of \(\pi\), the true proportion of fulltime workers so angered in the last year that they wanted to hit a colleague.

Short Answer

Expert verified
The 90% confidence interval for the true proportion of full-time workers so angered in the past year that they wanted to hit a colleague is approximately from 14.44% to 18.90%.

Step by step solution

01

Calculate the Sample Proportion

The sample proportion (\( p̂ \)) is the proportion of individuals in the random sample who have been so angered. This can be calculated by taking the number of angered individuals and dividing by the total number of people surveyed. \( p̂ =\frac{number\ of\ angered\ respondents}{total\ number\ of\ respondents} =\frac{125}{750}=0.1667 \)
02

Determine the z-Score

A z-score reflects how many standard deviations away our statistic is from the mean. For a 90% confidence interval, we look up the z-score that leaves 90% in the middle and 10% in the two tails of a standard normal distribution. This z-score is approximately 1.645.
03

Calculate the Standard Error

The standard error (SE) is a measure of how spread out numbers are in statistical data. It can be computed using the formula:\( SE=\sqrt{ (p̂ * (1 - p̂))/ n } =\sqrt{(0.1667 * (1 - 0.1667))/ 750} = 0.0135 \)
04

Construct the Confidence Interval

The 90% confidence interval can now be calculated:\( CI = p̂ ± (z * SE) \)Lower limit = \(0.1667 - (1.645 * 0.0135) = 0.1444\)Upper limit = \(0.1667 + (1.645 * 0.0135) = 0.1890\)
05

Interpret the Confidence Interval

We can be 90% confident that the true proportion of full-time workers who felt like hitting a coworker out of anger in the past year lies between 14.44% and 18.90%.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

According to an AP-Ipsos poll (June 15,2005 ), \(42 \%\) of 1001 randomly selected adult Americans made plans in May 2005 based on a weather report that turned out to be wrong. a. Construct and interpret a \(99 \%\) confidence interval for the proportion of Americans who made plans in May 2005 based on an incorrect weather report. b. Do you think it is reasonable to generalize this estimate to other months of the year? Explain.

The eating habits of 12 bats were examined in the article "Foraging Behavior of the Indian False Vampire Bat" (Biotropica \([1991]: 63-67) .\) These bats consume insects and frogs. For these 12 bats, the mean time to consume a frog was \(\bar{x}=21.9 \mathrm{~min}\). Suppose that the standard deviation was \(s=7.7 \mathrm{~min} .\) Construct and interpret a \(90 \%\) confidence interval for the mean suppertime of a vampire bat whose meal consists of a frog. What assumptions must be reasonable for the one-sample \(t\) interval to be appropriate?

The article "Sensory and Mechanical Assessment of the Quality of Frankfurters" (Journal of Texture Studies [1990]: \(395-409\) ) reported the following salt content (percentage by weight) for 10 frankfurters: \(\begin{array}{llllllllll}2.26 & 2.11 & 1.64 & 1.17 & 1.64 & 2.36 & 1.70 & 2.10 & 2.19 & 2.40\end{array}\) a. Use the given data to produce a point estimate of \(\mu\), the true mean salt content for frankfurters. b. Use the given data to produce a point estimate of \(\sigma^{2}\), the variance of salt content for frankfurters. c. Use the given data to produce an estimate of \(\sigma\), the standard deviation of salt content. Is the statistic you used to produce your estimate unbiased?

Example \(9.3\) gave the following airborne times for United Airlines flight 448 from Albuquerque to Denver on 10 randomly selected days: \(\begin{array}{llllllllll}57 & 54 & 55 & 51 & 56 & 48 & 52 & 51 & 59 & 59\end{array}\) a. Compute and interpret a \(90 \%\) confidence interval for the mean airborne time for flight 448 . b. Give an interpretation of the \(90 \%\) confidence level associated with the interval estimate in Part (a). c. Based on your interval in Part (a), if flight 448 is scheduled to depart at 10 A.M., what would you recommend for the published arrival time? Explain.

Seventy-seven students at the University of Virginia were asked to keep a diary of a conversation with their mothers, recording any lies they told during these conversations (San Luis Obispo Telegram-Tribune, August 16 , 1995 ). It was reported that the mean number of lies per conversation was \(0.5 .\) Suppose that the standard deviation (which was not reported) was \(0.4\). a. Suppose that this group of 77 is a random sample from the population of students at this university. Construct a \(95 \%\) confidence interval for the mean number of lies per conversation for this population. b. The interval in Part (a) does not include 0 . Does this imply that all students lie to their mothers? Explain.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free