Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

The article "National Geographic, the Doomsday Machine," which appeared in the March 1976 issue of the Journal of Irreproducible Results (yes, there really is a journal by that name -it's a spoof of technical journals!) predicted dire consequences resulting from a nationwide buildup of National Geographic magazines. The author's predictions are based on the observation that the number of subscriptions for National Geographic is on the rise and that no one ever throws away a copy of National Geographic. A key to the analysis presented in the article is the weight of an issue of the magazine. Suppose that you were assigned the task of estimating the average weight of an issue of National Geographic. How many issues should you sample to estimate the average weight to within \(0.1 \mathrm{oz}\) with \(95 \%\) confidence? Assume that \(\sigma\) is known to be 1 oz.

Short Answer

Expert verified
The needed sample size for estimating the average weight of a National Geographic magazine within 0.1 oz with 95% confidence is 385.

Step by step solution

01

Understand the Given Values

In the exercise, you are given a few elements:\nThe confidence level, which is 95%.\nAn error margin, which is 0.1 oz.\nThe population standard deviation - denoted by the Greek letter \(\sigma\) - which is 1 oz.
02

Calculate the Z-value

To calculate the necessary sample size, you also need the z-value associated with the desired confidence level. The z-value is a statistical measurement that describes a value's relationship to the mean of a group of values. You can find the Z-value from a standard Z-table or alternatively use online calculators or statistical software. For a 95% confidence level, the Z-value is approximately 1.96.
03

Apply the Formula for Sample Size

The formula used for estimating a sample size when population standard deviation is known: \[n = \left( \frac{Z*\sigma}{E} \right)^2\] where n is the sample size, Z is the Z-value from a standard normal distribution corresponding to the desired confidence level (in this case 1.96), \( \sigma \) is the population standard deviation (1 oz) and E denotes the margin of error (0.1 oz). Plugging in these values the formula becomes: \[n = \left (\frac{1.96 * 1}{0.1}\right )^2\]
04

Calculate Sample Size

Carrying out the calculation will provide the required sample size. Since you can't have a fraction of a magazine, you would round up to the nearest whole number if the calculation doesn't yield an exact whole number. In this case, the formula provides a sample size of 384.16, so you would round up to 385. So, you need to sample 385 issues of National Geographic to estimate the average weight to within 0.1 oz with 95% confidence, given that the standard deviation is 1 oz.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

One thousand randomly selected adult Americans participated in a survey conducted by the Associated Press (June, 2006). When asked "Do you think it is sometimes justified to lie or do you think lying is never justified?" \(52 \%\) responded that lying was never justified. When asked about lying to avoid hurting someone's feelings, 650 responded that this was often or sometimes OK. a. Construct a \(90 \%\) confidence interval for the proportion of adult Americans who think lying is never justified. b. Construct a \(90 \%\) confidence interval for the proportion of adult American who think that it is often or sometimes OK to lie to avoid hurting someone's feelings. c. Based on the confidence intervals from Parts (a) and (b), comment on the apparent inconsistency in the responses given by the individuals in this sample.

Fat contents (in percentage) for 10 randomly selected hot dogs were given in the article "Sensory and Mechanical Assessment of the Quality of Frankfurters" (Journal of Texture Studies \([1990]: 395-409\) ). Use the following data to construct a \(90 \%\) confidence interval for the true mean fat percentage of hot dogs: \(\begin{array}{lllllllllllll}25.2 & 21.3 & 22.8 & 17.0 & 29.8 & 21.0 & 25.5 & 16.0 & 20.9 & 19.5\end{array}\)

The Gallup Organization conducts an annual survey on crime. It was reported that \(25 \%\) of all households experienced some sort of crime during the past year. This estimate was based on a sample of 1002 randomly selected adults. The report states, "One can say with \(95 \%\) confidence that the margin of sampling error is \(\pm 3\) percentage points." Explain how this statement can be justified.

The following data on gross efficiency (ratio of work accomplished per minute to calorie expenditure per minute) for trained endurance cyclists were given in the article "Cycling Efficiency Is Related to the Percentage of Type I Muscle Fibers" (Medicine and Science in Sports and Exercise [1992]: \(782-88\) ): \(\begin{array}{llllllll}18.3 & 18.9 & 19.0 & 20.9 & 21.4 & 20.5 & 20.1 & 20.1\end{array}\) \(\begin{array}{llllllll}20.8 & 20.5 & 19.9 & 20.5 & 20.6 & 22.1 & 21.9 & 21.2\end{array}\) \(\begin{array}{lll}20.5 & 22.6 & 22.6\end{array}\) a. Assuming that the distribution of gross energy in the population of all endurance cyclists is normal, give a point estimate of \(\mu\), the population mean gross efficiency. b. Making no assumptions about the shape of the population distribution, estimate the proportion of all such cyclists whose gross efficiency is at most 20 .

Because of safety considerations, in May 2003 the Federal Aviation Administration (FAA) changed its guidelines for how small commuter airlines must estimate passenger weights. Under the old rule, airlines used \(180 \mathrm{lb}\) as a typical passenger weight (including carry-on luggage) in warm months and \(185 \mathrm{lb}\) as a typical weight in cold months. The Alaska Journal of Commerce (May 25, 2003 ) reported that Frontier Airlines conducted a study to estimate average passenger plus carry-on weights. They found an average summer weight of \(183 \mathrm{lb}\) and a winter average of \(190 \mathrm{lb} .\) Suppose that each of these estimates was based on a random sample of 100 passengers and that the sample standard deviations were 20 lb for the summer weights and \(23 \mathrm{lb}\) for the winter weights. a. Construct and interpret a \(95 \%\) confidence interval for the mean summer weight (including carry-on luggage) of Frontier Airlines passengers. b. Construct and interpret a \(95 \%\) confidence interval for the mean winter weight (including carry-on luggage) of Frontier Airlines passengers. c. The new FAA recommendations are \(190 \mathrm{lb}\) for summer and \(195 \mathrm{lb}\) for winter. Comment on these recommendations in light of the confidence interval estimates from Parts (a) and (b).

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free