Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Samples of two different types of automobiles were selected, and the actual speed for each car was determined when the speedometer registered \(50 \mathrm{mph}\). The resulting \(95 \%\) confidence intervals for true average actual speed were \((51.3,52.7)\) and \((49.4,50.6)\). Assuming that the two sample standard deviations are identical, which confidence interval is based on the larger sample size? Explain your reasoning.

Short Answer

Expert verified
The confidence interval \((49.4,50.6)\) for the second type of automobile is based on a larger sample size. This conclusion is reached by comparing the widths of the given confidence intervals.

Step by step solution

01

Understand the Confidence Intervals

The confidence intervals given for the two types of automobiles are \( (51.3,52.7) \) and \( (49.4,50.6) \). The width of these intervals gives us an idea of the precision of our estimate. The narrower the interval, the more precise our estimate is.
02

Compare the Width of the Confidence Intervals

To know which confidence interval is based on a larger sample size, we compare their width. The width of a confidence interval for the mean is largely determined by the standard deviation and the sample size. Because we are assuming the standard deviations to be identical, the interval with the smaller width should have a larger sample size. The width of the first interval is \(52.7 - 51.3 = 1.4\) and that of the second interval is \(50.6 - 49.4 = 1.2\)
03

Decide which sample size is larger

Since the width of the second interval (1.2) is less than the width of the first interval (1.4), this suggests that the second confidence interval is based on a larger sample size. This is because the greater the size of the sample, the lower the variability around the mean, resulting in a narrower confidence interval.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In the article "Fluoridation Brushed Off by Utah" (Associated Press, August 24,1998 ), it was reported that a small but vocal minority in Utah has been successful in keeping fluoride out of Utah water supplies despite evidence that fluoridation reduces tooth decay and despite the fact that a clear majority of Utah residents favor fluoridation. To support this statement, the article included the result of a survey of Utah residents that found \(65 \%\) to be in favor of fluoridation. Suppose that this result was based on a random sample of 150 Utah residents. Construct and interpret a \(90 \%\) confidence interval for \(\pi\), the true proportion of Utah residents who favor fluoridation. Is this interval consistent with the statement that fluoridation is favored by a clear majority of residents?

According to an AP-Ipsos poll (June 15,2005 ), \(42 \%\) of 1001 randomly selected adult Americans made plans in May 2005 based on a weather report that turned out to be wrong. a. Construct and interpret a \(99 \%\) confidence interval for the proportion of Americans who made plans in May 2005 based on an incorrect weather report. b. Do you think it is reasonable to generalize this estimate to other months of the year? Explain.

The report "2005 Electronic Monitoring \& Surveillance Survey: Many Companies Monitoring, Recording, Videotaping-and Firing-Employees" (American Management Association, 2005 ) summarized the results of a survey of 526 U.S. businesses. The report stated that 137 of the 526 businesses had fired workers for misuse of the Internet and 131 had fired workers for email misuse. For purposes of this exercise, assume that it is reasonable to regard this sample as representative of businesses in the United States. a. Construct and interpret a \(95 \%\) confidence interval for the proportion of U.S. businesses that have fired workers for misuse of the Internet. b. What are two reasons why a \(90 \%\) confidence interval for the proportion of U.S. businesses that have fired workers for misuse of email would be narrower than the \(95 \%\) confidence interval computed in Part (a).

In an AP-AOL sports poll (Associated Press, December 18,2005 ), 394 of 1000 randomly selected U.S. adults indicated that they considered themselves to be baseball fans. Of the 394 baseball fans, 272 stated that they thought the designated hitter rule should either be expanded to both baseball leagues or eliminated. a. Construct a \(95 \%\) confidence interval for the proportion of U.S. adults that consider themselves to be baseball fans. b. Construct a \(95 \%\) confidence interval for the proportion of those who consider themselves to be baseball fans that think the designated hitter rule should be expanded to both leagues or eliminated. c. Explain why the confidence intervals of Parts (a) and (b) are not the same width even though they both have a confidence level of \(95 \%\).

Data consistent with summary quantities in the article referenced in Exercise \(9.3\) on total calorie consumption on a particular day are given for a sample of children who did not eat fast food on that day and for a sample of children who did eat fast food on that day. Assume that it is reasonable to regard these samples as representative of the population of children in the United States. No Fast Food \(\begin{array}{llllllll}2331 & 1918 & 1009 & 1730 & 1469 & 2053 & 2143 & 1981 \\ 1852 & 1777 & 1765 & 1827 & 1648 & 1506 & 2669 & \\ \text { Fast Food } & & & & & & \\ 2523 & 1758 & 934 & 2328 & 2434 & 2267 & 2526 & 1195 \\ 890 & 1511 & 875 & 2207 & 1811 & 1250 & 2117 & \end{array}\) a. Use the given information to estimate the mean calorie intake for children in the United States on a day when no fast food is consumed. b. Use the given information to estimate the mean calorie intake for children in the United States on a day when fast food is consumed. c. Use the given information to estimate the produce estimates of the standard deviations of calorie intake for days when no fast food is consumed and for days when fast food is consumed.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free