Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Given a variable that has a \(t\) distribution with the specified degrees of freedom, what percentage of the time will its value fall in the indicated region? a. \(10 \mathrm{df}\), between \(-1.81\) and \(1.81\) b. \(10 \mathrm{df}\), between \(-2.23\) and \(2.23\) c. \(24 \mathrm{df}\), between \(-2.06\) and \(2.06\) d. \(24 \mathrm{df}\), between \(-2.80\) and \(2.80\) e. 24 df, outside the interval from \(-2.80\) to \(2.80\) f. \(24 \mathrm{df}\), to the right of \(2.80\) g. \(10 \mathrm{df}\), to the left of \(-1.81\)

Short Answer

Expert verified
The percentages corresponding to the t-values at the specified degrees of freedom are approximately: a) 80%, b) 95%, c) 95%, d) 99%, e) 1%, f) 0.5%, g) 10%.

Step by step solution

01

Understand t-distribution and t-table

A t-distribution is a type of probability distribution that is symmetrical and bell-shaped, similar to the normal distribution but is used when the sample size is small and/or when the population standard deviation is unknown. A t-table is a table that shows probabilities for different t-scores or areas under the curve of the t-distribution. The first step is understanding how to use this table.
02

Identify degrees of freedom and t-scores

In each sub-question, identify the degrees of freedom (df) and the t-scores. The degree of freedom is the number mentioned with df and the t-score can be positive or negative values given for each problem.
03

Locate the t-scores in the t-table

Using the degrees of freedom and t-scores from step 2, find the corresponding probability or area in the t-table. Remember that for a negative t-score, the percentage of time it falls in the indicated region is just the probability we find from the table. For a positive t-score, since the t-distribution is symmetrical, subtract the probability we find from the table from 1 to get the percentage of time.
04

Calculate the percentages for each sub-question

For each sub-question, the percentage of the time will depend on the interpretation of the question. For questions asking for the area between two t-scores, compute that by calculating the area for the positive t-score (step 3) and subtracting the area for the negative t-score. For questions asking for the area outside a range, subtract the area between the range from 1. For questions about areas to the left or right of a t-score, refer to steps outlined in step 3.
05

Identify results

After performing these steps for each sub-question, the resulting percentages correspond to the percentage of the time that the variable's value will fall in the specified region for each situation.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

The article "CSI Effect Has Juries Wanting More Evidence" (USA Today, August 5,2004 ) examines how the popularity of crime-scene investigation television shows is influencing jurors' expectations of what evidence should be produced at a trial. In a survey of 500 potential jurors, one study found that 350 were regular watchers of at least one crime-scene forensics television series. a. Assuming that it is reasonable to regard this sample of 500 potential jurors as representative of potential jurors in the United States, use the given information to construct and interpret a \(95 \%\) confidence interval for the true proportion of potential jurors who regularly watch at least one crime-scene investigation series. b. Would a \(99 \%\) confidence interval be wider or narrower than the \(95 \%\) confidence interval from Part (a)?

Five hundred randomly selected working adults living in Calgary, Canada were asked how long, in minutes, their typical daily commute was (Calgary Herald Traffic Study, Ipsos, September 17,2005 ). The resulting sample mean and standard deviation of commute time were \(28.5\) minutes and \(24.2\) minutes, respectively. Construct and interpret a \(90 \%\) confidence interval for the mean commute time of working adult Calgary residents.

Because of safety considerations, in May 2003 the Federal Aviation Administration (FAA) changed its guidelines for how small commuter airlines must estimate passenger weights. Under the old rule, airlines used \(180 \mathrm{lb}\) as a typical passenger weight (including carry-on luggage) in warm months and \(185 \mathrm{lb}\) as a typical weight in cold months. The Alaska Journal of Commerce (May 25, 2003 ) reported that Frontier Airlines conducted a study to estimate average passenger plus carry-on weights. They found an average summer weight of \(183 \mathrm{lb}\) and a winter average of \(190 \mathrm{lb} .\) Suppose that each of these estimates was based on a random sample of 100 passengers and that the sample standard deviations were 20 lb for the summer weights and \(23 \mathrm{lb}\) for the winter weights. a. Construct and interpret a \(95 \%\) confidence interval for the mean summer weight (including carry-on luggage) of Frontier Airlines passengers. b. Construct and interpret a \(95 \%\) confidence interval for the mean winter weight (including carry-on luggage) of Frontier Airlines passengers. c. The new FAA recommendations are \(190 \mathrm{lb}\) for summer and \(195 \mathrm{lb}\) for winter. Comment on these recommendations in light of the confidence interval estimates from Parts (a) and (b).

The article "First Year Academic Success: A Prediction Combining Cognitive and Psychosocial Variables for Caucasian and African American Students" (Journal of College Student Development \([1999]: 599-610\) ) reported that the sample mean and standard deviation for high school grade point average (GPA) for students enrolled at a large research university were \(3.73\) and \(0.45\), respectively. Suppose that the mean and standard deviation were based on a random sample of 900 students at the university. a. Construct a \(95 \%\) confidence interval for the mean high school GPA for students at this university. b. Suppose that you wanted to make a statement about the range of GPAs for students at this university. Is it reasonable to say that \(95 \%\) of the students at the university have GPAs in the interval you computed in Part (a)? Explain.

The article "Sensory and Mechanical Assessment of the Quality of Frankfurters" (Journal of Texture Studies [1990]: \(395-409\) ) reported the following salt content (percentage by weight) for 10 frankfurters: \(\begin{array}{llllllllll}2.26 & 2.11 & 1.64 & 1.17 & 1.64 & 2.36 & 1.70 & 2.10 & 2.19 & 2.40\end{array}\) a. Use the given data to produce a point estimate of \(\mu\), the true mean salt content for frankfurters. b. Use the given data to produce a point estimate of \(\sigma^{2}\), the variance of salt content for frankfurters. c. Use the given data to produce an estimate of \(\sigma\), the standard deviation of salt content. Is the statistic you used to produce your estimate unbiased?

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free