Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Consumption of fast food is a topic of interest to researchers in the field of nutrition. The article "Effects of Fast-Food Consumption on Energy Intake and Diet Quality Among Children" (Pediatrics [2004]: \(112-118\) ) reported that 1720 of those in a random sample of 6212 U.S. children indicated that on a typical day they ate fast food. Estimate \(\pi\), the proportion of children in the U.S. who eat fast food on a typical day.

Short Answer

Expert verified
The estimated proportion (\(\pi\)) of U.S. children who eat fast food on a typical day is approximately \(0.277\) (or 27.7%), based on the provided sample.

Step by step solution

01

Understanding given data

We are given that in a sample of 6212 U.S. children, 1720 of them eat fast food on a typical day. The goal is to estimate the proportion (\(\pi\)) of all U.S. children who are likely to consume fast food in a typical day based on this sample.
02

Calculate the Proportion

The proportion (\(\pi\)) of children who eat fast food is calculated by dividing the number of children who eat fast food by the total number of children. In this case, \(\pi\) can be calculated as: \(\pi = 1720 / 6212\).
03

Calculation

Perform the division operation that was established in the previous step to get the estimate of \(\pi\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

The Chronicle of Higher Education (January 13, 1993) reported that \(72.1 \%\) of those responding to a national survey of college freshmen were attending the college of their first choice. Suppose that \(n=500\) students responded to the survey (the actual sample size was much larger). a. Using the sample size \(n=500\), calculate a \(99 \%\) confidence interval for the proportion of college students who are attending their first choice of college. b. Compute and interpret a \(95 \%\) confidence interval for the proportion of students who are not attending their first choice of college. c. The actual sample size for this survey was much larger than 500 . Would a confidence interval based on the actual sample size have been narrower or wider than the one computed in Part (a)?

A manufacturer of college textbooks is interested in estimating the strength of the bindings produced by a particular binding machine. Strength can be measured by recording the force required to pull the pages from the binding. If this force is measured in pounds, how many books should be tested to estimate with \(95 \%\) confidence to within \(0.1 \mathrm{lb}\), the average force required to break the binding? Assume that \(\sigma\) is known to be \(0.8 \mathrm{lb}\).

Five students visiting the student health center for a free dental examination during National Dental Hygiene Month were asked how many months had passed since their last visit to a dentist. Their responses were as follows: \(\begin{array}{lllll}6 & 17 & 11 & 22 & 29\end{array}\) Assuming that these five students can be considered a random sample of all students participating in the free checkup program, construct a \(95 \%\) confidence interval for the mean number of months elapsed since the last visit to a dentist for the population of students participating in the program.

The article "Consumers Show Increased Liking for Diesel Autos" (USA Today, January 29,2003 ) reported that \(27 \%\) of U.S. consumers would opt for a diesel car if it ran as cleanly and performed as well as a car with a gas engine. Suppose that you suspect that the proportion might be different in your area and that you want to conduct a survey to estimate this proportion for the adult residents of your city. What is the required sample size if you want to estimate this proportion to within \(.05\) with \(95 \%\) confidence? Compute the required sample size first using 27 as a preliminary estimate of \(\pi\) and then using the conservative value of \(.5 .\) How do the two sample sizes compare? What sample size would you recommend for this study?

The formula used to compute a confidence interval for the mean of a normal population when \(n\) is small is $$ \bar{x} \pm(t \text { critical value }) \frac{s}{\sqrt{n}} $$ What is the appropriate \(t\) critical value for each of the following confidence levels and sample sizes? a. \(95 \%\) confidence, \(n=17\) b. \(90 \%\) confidence, \(n=12\) c. \(99 \%\) confidence, \(n=24\) d. \(90 \%\) confidence, \(n=25\) e. \(90 \%\) confidence, \(n=13\) f. \(95 \%\) confidence, \(n=10\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free