Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Why is an unbiased statistic generally preferred over a biased statistic for estimating a population characteristic? Does unbiasedness alone guarantee that the estimate will be close to the true value? Explain. Under what circumstances might you choose a biased statistic over an unbiased statistic if two statistics are available for estimating a population characteristic?

Short Answer

Expert verified
An unbiased statistic is usually preferred as it doesn't consistently over/underestimate the true value. However, unbiasedness alone doesn't guarantee closeness to the true value: high variance can lead to significant differences. When a biased statistic results in lower variance and closer estimates especially with smaller sample sizes, it might be preferred.

Step by step solution

01

Define Biased and Unbiased Statistics

Firstly, it's important to understand what these terms mean: a statistic is unbiased if its expected value is equal to the population parameter being estimated. Conversely, a statisic is biased if its expected value is not equal to the parameter it estimates.
02

Explain Preference for Unbiased Statistics

An unbiased statistic is generally preferred over a biased one because an average taken from unbiased statistics will be close to the population parameter. Over time, it doesn't consistently underestimate or overestimate the true value, making unbiased estimators more reliable.
03

Discuss Limits of Unbiasedness

However, being unbiased doesn't guarantee that an estimate will always be close to the true value. For instance, if the variance of the statistic is high, the estimates can differ significantly from the population parameter despite being unbiased on average. Thus, while unbiasedness is generally preferred, it's not the only factor to consider.
04

Explain Choosing a Biased Statistic

There could be situations where a biased statistic might be preferred. For example, if the biased statistic consistently gives estimates closer to the population parameter with lower variance, it could be chosen over an unbiased statistic. Accuracy and precision of estimates are key, especially when sample sizes are small.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In the article "Fluoridation Brushed Off by Utah" (Associated Press, August 24,1998 ), it was reported that a small but vocal minority in Utah has been successful in keeping fluoride out of Utah water supplies despite evidence that fluoridation reduces tooth decay and despite the fact that a clear majority of Utah residents favor fluoridation. To support this statement, the article included the result of a survey of Utah residents that found \(65 \%\) to be in favor of fluoridation. Suppose that this result was based on a random sample of 150 Utah residents. Construct and interpret a \(90 \%\) confidence interval for \(\pi\), the true proportion of Utah residents who favor fluoridation. Is this interval consistent with the statement that fluoridation is favored by a clear majority of residents?

Increases in worker injuries and disability claims have prompted renewed interest in workplace design and regulation. As one particular aspect of this, employees required to do regular lifting should not have to handle unsafe loads. The article "Anthropometric, Muscle Strength, and Spinal Mobility Characteristics as Predictors of the Rating of Acceptable Loads in Parcel Sorting" (Ergonomics [1992]: 1033-1044) reported on a study involving a random sample of \(n=18\) male postal workers. The sample mean rating of acceptable load attained with a work-simulating test was found to be \(\bar{x}=9.7 \mathrm{~kg}\). and the sample standard deviation was \(s=4.3 \mathrm{~kg}\). Suppose that in the population of all male postal workers, the distribution of rating of acceptable load can be modeled approximately using a normal distribution with mean value \(\mu\). Construct and interpret a \(95 \%\) confidence interval for \(\mu\).

The Gallup Organization conducted a telephone survey on attitudes toward AIDS (Gallup Monthly, 1991). A total of 1014 individuals were contacted. Each individual was asked whether they agreed with the following statement: "Landlords should have the right to evict a tenant from an apartment because that person has AIDS." One hundred one individuals in the sample agreed with this statement. Use these data to construct a \(90 \%\) confidence interval for the proportion who are in agreement with this statement. Give an interpretation of your interval.

In an AP-AOL sports poll (Associated Press, December 18,2005 ), 394 of 1000 randomly selected U.S. adults indicated that they considered themselves to be baseball fans. Of the 394 baseball fans, 272 stated that they thought the designated hitter rule should either be expanded to both baseball leagues or eliminated. a. Construct a \(95 \%\) confidence interval for the proportion of U.S. adults that consider themselves to be baseball fans. b. Construct a \(95 \%\) confidence interval for the proportion of those who consider themselves to be baseball fans that think the designated hitter rule should be expanded to both leagues or eliminated. c. Explain why the confidence intervals of Parts (a) and (b) are not the same width even though they both have a confidence level of \(95 \%\).

The Gallup Organization conducts an annual survey on crime. It was reported that \(25 \%\) of all households experienced some sort of crime during the past year. This estimate was based on a sample of 1002 randomly selected adults. The report states, "One can say with \(95 \%\) confidence that the margin of sampling error is \(\pm 3\) percentage points." Explain how this statement can be justified.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free