Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

The report "2005 Electronic Monitoring \& Surveillance Survey: Many Companies Monitoring, Recording, Videotaping-and Firing-Employees" (American Management Association, 2005 ) summarized the results of a survey of 526 U.S. businesses. The report stated that 137 of the 526 businesses had fired workers for misuse of the Internet and 131 had fired workers for email misuse. For purposes of this exercise, assume that it is reasonable to regard this sample as representative of businesses in the United States. a. Construct and interpret a \(95 \%\) confidence interval for the proportion of U.S. businesses that have fired workers for misuse of the Internet. b. What are two reasons why a \(90 \%\) confidence interval for the proportion of U.S. businesses that have fired workers for misuse of email would be narrower than the \(95 \%\) confidence interval computed in Part (a).

Short Answer

Expert verified
The 95% confidence interval for the proportion of U.S. businesses that have fired workers for misuse of the internet is calculated using the formula for confidence intervals and the calculated proportion. The 90% confidence interval would be narrower because a lower degree of confidence results in more accepted uncertainty and a lower z-score.

Step by step solution

01

Calculate the Internet Misuse Proportion

The total number of businesses surveyed is 526, and out of these 137 had fired workers for misuse of the internet. The proportion of businesses (p) which have fired workers for internet misuse is thus calculated as \(p = \frac{137}{526} \)
02

Calculate the Confidence Interval for Internet Misuse

The confidence interval is obtained through the formula \(CI = p ± Zα/2 * SE \), where p is the proportion previously calculated in step 1, Zα/2 is the Z score that corresponds to the desired level of confidence (In this case, it would be 1.96 for a 95% confidence level), and SE (Standard Error) is calculated as \(SE = \sqrt{\frac{p(1-p)}{n}}\), where n is the sample size and p the proportion.
03

Interpret the Confidence Interval

The result from step 2 gives us an interval with a lower and higher bound. This is interpreted as the range in which we are 95% confident that the true proportion of U.S. businesses that have fired workers for internet misuse falls.
04

Reasons for a Narrower 90% Confidence Interval

The first reason why a 90% confidence interval would be narrower is because a lower degree of confidence means we accept more uncertainty about where the true value is and thus results in a narrower range. Secondly, the Zα/2 score for a 90% confidence interval is lower (1.645) compared to the Zα/2 score for a 95% confidence interval (1.96), which directly reduces the margin of error and hence results in a narrower confidence interval.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

One thousand randomly selected adult Americans participated in a survey conducted by the Associated Press (June, 2006). When asked "Do you think it is sometimes justified to lie or do you think lying is never justified?" \(52 \%\) responded that lying was never justified. When asked about lying to avoid hurting someone's feelings, 650 responded that this was often or sometimes OK. a. Construct a \(90 \%\) confidence interval for the proportion of adult Americans who think lying is never justified. b. Construct a \(90 \%\) confidence interval for the proportion of adult American who think that it is often or sometimes OK to lie to avoid hurting someone's feelings. c. Based on the confidence intervals from Parts (a) and (b), comment on the apparent inconsistency in the responses given by the individuals in this sample.

A study reported in Newsweek (December 23, 1991) involved a sample of 935 smokers. Each individual received a nicotine patch, which delivers nicotine to the bloodstream but at a much slower rate than cigarettes do. Dosage was decreased to 0 over a 12-week period. Suppose that 245 of the subjects were still not smoking 6 months after treatment (this figure is consistent with information given in the article). Estimate the percentage of all smokers who, when given this treatment, would refrain from smoking for at least 6 months.

The article "Viewers Speak Out Against Reality TV" (Associated Press, September 12,2005 ) included the following statement: "Few people believe there's much reality in reality TV: a total of 82 percent said the shows are either 'totally made up' or 'mostly distorted'." This statement was based on a survey of 1002 randomly selected adults. Compute and interpret a bound on the error of estimation for the reported percentage.

A random sample of \(n=12\) four-year-old red pine trees was selected, and the diameter (in inches) of each tree's main stem was measured. The resulting observations are as follows: \(\begin{array}{llllllll}11.3 & 10.7 & 12.4 & 15.2 & 10.1 & 12.1 & 16.2 & 10.5\end{array}\) \(\begin{array}{llll}11.4 & 11.0 & 10.7 & 12.0\end{array}\) a. Compute a point estimate of \(\sigma\), the population standard deviation of main stem diameter. What statistic did you use to obtain your estimate? b. Making no assumptions about the shape of the population distribution of diameters, give a point estimate for the population median diameter. What statistic did you use to obtain the estimate? c. Suppose that the population distribution of diameter is symmetric but with heavier tails than the normal distribution. Give a point estimate of the population mean diameter based on a statistic that gives some protection against the presence of outliers in the sample. What statistic did you use? d. Suppose that the diameter distribution is normal. Then the 90 th percentile of the diameter distribution is \(\mu\) t \(1.28 \sigma\) (so \(90 \%\) of all trees have diameters less than this value). Compute a point estimate for this percentile. (Hint: First compute an estimate of \(\mu\) in this case; then use it along with your estimate of \(\sigma\) from Part (a).)

The Gallup Organization conducts an annual survey on crime. It was reported that \(25 \%\) of all households experienced some sort of crime during the past year. This estimate was based on a sample of 1002 randomly selected adults. The report states, "One can say with \(95 \%\) confidence that the margin of sampling error is \(\pm 3\) percentage points." Explain how this statement can be justified.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free