Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

In a survey of 1000 randomly selected adults in the United States, participants were asked what their most favorite and what their least favorite subject was when they were in school (Associated Press, August 17,2005\() .\) In what might seem like a contradiction, math was chosen more often than any other subject in both categories! Math was chosen by 230 of the 1000 as the favorite subject, and it was also chosen by 370 of the 1000 as the least favorite subject. a. Construct a \(95 \%\) confidence interval for the proportion of U.S. adults for whom math was the favorite subject in school. b. Construct a \(95 \%\) confidence interval for the proportion of U.S. adults for whom math was the least favorite subject.

Short Answer

Expert verified
a. The 95% confidence interval for the proportion of U.S. adults for whom math was the favorite subject in school is approximately (0.203, 0.257). b. The 95% confidence interval for the proportion of U.S. adults for whom math was the least favorite subject is approximately (0.343, 0.397).

Step by step solution

01

Calculate proportions

First, need to calculate the proportions of U.S adults whose favorite and least favorite subject was math. For favorites, the proportion ( \( p_1 \) ) is 230 out of 1000, or \( p_1 = 230/1000 = 0.23 \). For least favorites, the proportion (\( p_2 \)) is 370 out of 1000, or \( p_2 = 370/1000 = 0.37 \).
02

Construct the confidence interval for favorite subject

Plug \( p_1 \), the z-value (1.96), and the sample size (1000) into the formula for the confidence interval: \( p_1 \pm 1.96 \sqrt{p_1(1-p_1)/1000} \). After solving, this gives \( 0.23 \pm 1.96 \sqrt{0.23(1-0.23)/1000} \). Calculating the square root and carrying out the operation, find the confidence interval to be approximately (0.203, 0.257).
03

Construct the confidence interval for least favorite subject

Using \( p_2 \), the z-value (1.96), and the sample size (1000) into the formula for the confidence interval: \( p_2 \pm 1.96 \sqrt{p_2(1-p_2)/1000} \). After solving, this gives \( 0.37 \pm 1.96 \sqrt{0.37(1-0.37)/1000} \). Calculating the square root and carrying out the operation, find the confidence interval to be approximately (0.343, 0.397).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Example \(9.3\) gave the following airborne times for United Airlines flight 448 from Albuquerque to Denver on 10 randomly selected days: \(\begin{array}{llllllllll}57 & 54 & 55 & 51 & 56 & 48 & 52 & 51 & 59 & 59\end{array}\) a. Compute and interpret a \(90 \%\) confidence interval for the mean airborne time for flight 448 . b. Give an interpretation of the \(90 \%\) confidence level associated with the interval estimate in Part (a). c. Based on your interval in Part (a), if flight 448 is scheduled to depart at 10 A.M., what would you recommend for the published arrival time? Explain.

The interval from \(-2.33\) to \(1.75\) captures an area of \(.95\) under the \(z\) curve. This implies that another largesample \(95 \%\) confidence interval for \(\mu\) has lower limit \(\bar{x}-2.33 \frac{\sigma}{\sqrt{n}}\) and upper limit \(\bar{x}+1.75 \frac{\sigma}{\sqrt{n}} .\) Would you recommend using this \(95 \%\) interval over the \(95 \%\) interval \(\bar{x} \pm 1.96 \frac{\sigma}{\sqrt{n}}\) discussed in the text? Explain. (Hint: Look at the width of each interval.)

The formula used to compute a confidence interval for the mean of a normal population when \(n\) is small is $$ \bar{x} \pm(t \text { critical value }) \frac{s}{\sqrt{n}} $$ What is the appropriate \(t\) critical value for each of the following confidence levels and sample sizes? a. \(95 \%\) confidence, \(n=17\) b. \(90 \%\) confidence, \(n=12\) c. \(99 \%\) confidence, \(n=24\) d. \(90 \%\) confidence, \(n=25\) e. \(90 \%\) confidence, \(n=13\) f. \(95 \%\) confidence, \(n=10\)

The article "Doctors Cite Burnout in Mistakes" (San Luis Obispo Tribune, March 5,2002 ) reported that many doctors who are completing their residency have financial struggles that could interfere with training. In a sample of 115 residents, 38 reported that they worked moonlighting jobs and 22 reported a credit card debt of more than \(\$ 3000\). Suppose that it is reasonable to consider this sample of 115 as a random sample of all medical residents in the United States. a. Construct and interpret a \(95 \%\) confidence interval for the proportion of U.S. medical residents who work moonlighting jobs. b. Construct and interpret a \(90 \%\) confidence interval for the proportion of U.S. medical residents who have a credit card debt of more than \(\$ 3000\). c. Give two reasons why the confidence interval in Part (a) is wider than the confidence interval in Part (b).

Increases in worker injuries and disability claims have prompted renewed interest in workplace design and regulation. As one particular aspect of this, employees required to do regular lifting should not have to handle unsafe loads. The article "Anthropometric, Muscle Strength, and Spinal Mobility Characteristics as Predictors of the Rating of Acceptable Loads in Parcel Sorting" (Ergonomics [1992]: 1033-1044) reported on a study involving a random sample of \(n=18\) male postal workers. The sample mean rating of acceptable load attained with a work-simulating test was found to be \(\bar{x}=9.7 \mathrm{~kg}\). and the sample standard deviation was \(s=4.3 \mathrm{~kg}\). Suppose that in the population of all male postal workers, the distribution of rating of acceptable load can be modeled approximately using a normal distribution with mean value \(\mu\). Construct and interpret a \(95 \%\) confidence interval for \(\mu\).

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free