Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

The article "Students Increasingly Turn to Credit Cards" (San Luis Obispo Tribune, July 21,2006 ) reported that \(37 \%\) of college freshmen and \(48 \%\) of college seniors carry a credit card balance from month to month. Suppose that the reported percentages were based on random samples of 1000 college freshmen and 1000 college seniors. a. Construct a \(90 \%\) confidence interval for the proportion of college freshmen who carry a credit card balance from month to month. b. Construct a \(90 \%\) confidence interval for the proportion of college seniors who carry a credit card balance from month to month. c. Explain why the two \(90 \%\) confidence intervals from Parts (a) and (b) are not the same width.

Short Answer

Expert verified
The 90% confidence intervals for the proportion of college freshmen and seniors who carry a credit card balance from month to month are calculated separately due to differing proportions and equal sample sizes. The varying widths of the intervals are due to these factors.

Step by step solution

01

Calculate standard error for both populations

The standard error for proportion is calculated as \(SE = sqrt[p(1-p)/n]\), where p is the proportion and n is the sample size. For college freshmen, \(SE_1 = sqrt[0.37(1-0.37)/1000]\). For college seniors, \(SE_2 = sqrt[0.48(1-0.48)/1000]\). Respectively, calculate these values.
02

Find the z-value corresponding to a 90% confidence level

Using a z-table or an online calculator, find the z-value corresponding to a confidence level of 90%. This z-value will be the same for both groups as they both have a 90% confidence level. The z-value for a 90% confidence level is approximately 1.645.
03

Construct confidence intervals

A confidence interval for a proportion is calculated as \(p ± z*SE\). For freshmen, the confidence interval would be \(0.37 ± 1.645*SE_1\). For seniors, it would be \(0.48 ± 1.645*SE_2\). Calculate these ranges.
04

Explain the difference in widths

The width of a confidence interval is determined by the product of the z-value and the standard error. Since the z-value is constant for both groups, the difference in width must be due to differences in the standard errors, which in turn are influenced by the different proportions and equal sample sizes for the two groups.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Fat contents (in percentage) for 10 randomly selected hot dogs were given in the article "Sensory and Mechanical Assessment of the Quality of Frankfurters" (Journal of Texture Studies \([1990]: 395-409\) ). Use the following data to construct a \(90 \%\) confidence interval for the true mean fat percentage of hot dogs: \(\begin{array}{lllllllllllll}25.2 & 21.3 & 22.8 & 17.0 & 29.8 & 21.0 & 25.5 & 16.0 & 20.9 & 19.5\end{array}\)

Despite protests from civil libertarians and gay rights activists, many people favor mandatory AIDS testing of certain at-risk groups, and some people even believe that all citizens should be tested. What proportion of the adults in the United States favor mandatory testing for all citizens? To assess public opinion on this issue, researchers conducted a survey of 1014 randomly selected adult U.S. citizens ("Large Majorities Continue to Back AIDS Testing," Gallup Poll Monthly [1991]: 25-28). The article reported that 466 of the 1014 people surveyed believed that all citizens should be tested. Use this information to estimate \(\pi\), the true proportion of all U.S. adults who favor AIDS testing of all citizens.

Recent high-profile legal cases have many people reevaluating the jury system. Many believe that juries in criminal trials should be able to convict on less than a unanimous vote. To assess support for this idea, investigators asked each individual in a random sample of Californians whether they favored allowing conviction by a 10-2 verdict in criminal cases not involving the death penalty. The Associated Press (San Luis Obispo TelegramTribune, September 13,1995 ) reported that \(71 \%\) supported the \(10-2\) verdict. Suppose that the sample size for this survey was \(n=900\). Compute and interpret a \(99 \%\) confidence interval for the proportion of Californians who favor the \(10-2\) verdict.

The following data are the calories per half-cup serving for 16 popular chocolate ice cream brands reviewed by Consumer Reports (July 1999): \(\begin{array}{llllllll}270 & 150 & 170 & 140 & 160 & 160 & 160 & 290 \\ 190 & 190 & 160 & 170 & 150 & 110 & 180 & 170\end{array}\) Is it reasonable to use the \(t\) confidence interval to compute a confidence interval for \(\mu\), the true mean calories per half-cup serving of chocolate ice cream? Explain why on why not.

Data consistent with summary quantities in the article referenced in Exercise \(9.3\) on total calorie consumption on a particular day are given for a sample of children who did not eat fast food on that day and for a sample of children who did eat fast food on that day. Assume that it is reasonable to regard these samples as representative of the population of children in the United States. No Fast Food \(\begin{array}{llllllll}2331 & 1918 & 1009 & 1730 & 1469 & 2053 & 2143 & 1981 \\ 1852 & 1777 & 1765 & 1827 & 1648 & 1506 & 2669 & \\ \text { Fast Food } & & & & & & \\ 2523 & 1758 & 934 & 2328 & 2434 & 2267 & 2526 & 1195 \\ 890 & 1511 & 875 & 2207 & 1811 & 1250 & 2117 & \end{array}\) a. Use the given information to estimate the mean calorie intake for children in the United States on a day when no fast food is consumed. b. Use the given information to estimate the mean calorie intake for children in the United States on a day when fast food is consumed. c. Use the given information to estimate the produce estimates of the standard deviations of calorie intake for days when no fast food is consumed and for days when fast food is consumed.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free