Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

According to an AP-Ipsos poll (June 15,2005 ), \(42 \%\) of 1001 randomly selected adult Americans made plans in May 2005 based on a weather report that turned out to be wrong. a. Construct and interpret a \(99 \%\) confidence interval for the proportion of Americans who made plans in May 2005 based on an incorrect weather report. b. Do you think it is reasonable to generalize this estimate to other months of the year? Explain.

Short Answer

Expert verified
a. The 99% confidence interval for the proportion of Americans who made plans based on an incorrect weather report in May 2005 would be (lower limit, upper limit) calculated in step 4. b. Whether or not it's reasonable to extend this to other months depends on your belief about seasonal effects. If you believe people's behavior towards weather reports doesn't change drastically per season, it might be okay to extend.

Step by step solution

01

Use the formula for the confidence interval for proportions

The formula to calculate the confidence interval for proportions is \(p ± Z*(√((p(1 - p))/n))\) where \(p\) is the sample proportion (0.42), \(n\) is the sample size (1001), and \(Z\) is the Z-score corresponding to the desired confidence level (for 99%, Z = 2.576).
02

Find the standard error

Substitute the given data into the formula \(√(p(1 - p))/n\). This means, \(√((0.42(1 - 0.42))/1001)\). The result will be used in the next step
03

Compute the margin of error

Multiply the Z-score by the standard error calculated in step 2 to find the margin of error. \(Z*standard\ error = 2.576 * standard\ error\) computed in step 2
04

Find the confidence interval

Subtract the margin of error from the sample proportion for the lower limit and add the margin of error to the sample proportion for the upper limit. This gives the 99% confidence interval for this case
05

Answer part b

Deciding if this could extend to future months depends on whether you believe the behavior of people in May (for weather reports) is drastically different from other months. If it is believed there's no significant seasonal effect, the intervals could extend. Otherwise, they might not.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

An article in the Chicago Tribune (August 29,1999 ) reported that in a poll of residents of the Chicago suburbs, \(43 \%\) felt that their financial situation had improved during the past year. The following statement is from the article: "The findings of this Tribune poll are based on interviews with 930 randomly selected suburban residents. The sample included suburban Cook County plus DuPage, Kane, Lake, McHenry, and Will Counties. In a sample of this size, one can say with \(95 \%\) certainty that results will differ by no more than 3 percent from results obtained if all residents had been included in the poll." Comment on this statement. Give a statistical argument to justify the claim that the estimate of \(43 \%\) is within \(3 \%\) of the true proportion of residents who feel that their financial situation has improved.

The Chronicle of Higher Education (January 13, 1993) reported that \(72.1 \%\) of those responding to a national survey of college freshmen were attending the college of their first choice. Suppose that \(n=500\) students responded to the survey (the actual sample size was much larger). a. Using the sample size \(n=500\), calculate a \(99 \%\) confidence interval for the proportion of college students who are attending their first choice of college. b. Compute and interpret a \(95 \%\) confidence interval for the proportion of students who are not attending their first choice of college. c. The actual sample size for this survey was much larger than 500 . Would a confidence interval based on the actual sample size have been narrower or wider than the one computed in Part (a)?

A study of the ability of individuals to walk in a straight line ("Can We Really Walk Straight?" American Journal of Physical Anthropology [1992]: \(19-27\) ) reported the following data on cadence (strides per second) for a sample of \(n=20\) randomly selected healthy men: \(\begin{array}{llllllllll}0.95 & 0.85 & 0.92 & 0.95 & 0.93 & 0.86 & 1.00 & 0.92 & 0.85 & 0.81\end{array}\) \(\begin{array}{llllllllll}0.78 & 0.93 & 0.93 & 1.05 & 0.93 & 1.06 & 1.06 & 0.96 & 0.81 & 0.96\end{array}\) Construct and interpret a \(99 \%\) confidence interval for the population mean cadence.

Consumption of fast food is a topic of interest to researchers in the field of nutrition. The article "Effects of Fast-Food Consumption on Energy Intake and Diet Quality Among Children" (Pediatrics [2004]: \(112-118\) ) reported that 1720 of those in a random sample of 6212 U.S. children indicated that on a typical day they ate fast food. Estimate \(\pi\), the proportion of children in the U.S. who eat fast food on a typical day.

The Associated Press (December 16,1991 ) reported that in a random sample of 507 people, only 142 correctly described the Bill of Rights as the first 10 amendments to the U.S. Constitution. Calculate a \(95 \%\) confidence interval for the proportion of the entire population that could give a correct description.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free