Chapter 9: Problem 11
For each of the following choices, explain which would result in a wider large-sample confidence interval for \(\pi\) : a. \(90 \%\) confidence level or \(95 \%\) confidence level b. \(n=100\) or \(n=400\)
Chapter 9: Problem 11
For each of the following choices, explain which would result in a wider large-sample confidence interval for \(\pi\) : a. \(90 \%\) confidence level or \(95 \%\) confidence level b. \(n=100\) or \(n=400\)
All the tools & learning materials you need for study success - in one app.
Get started for freeAccording to an AP-Ipsos poll (June 15,2005 ), \(42 \%\) of 1001 randomly selected adult Americans made plans in May 2005 based on a weather report that turned out to be wrong. a. Construct and interpret a \(99 \%\) confidence interval for the proportion of Americans who made plans in May 2005 based on an incorrect weather report. b. Do you think it is reasonable to generalize this estimate to other months of the year? Explain.
In a survey of 1000 randomly selected adults in the United States, participants were asked what their most favorite and what their least favorite subject was when they were in school (Associated Press, August 17,2005\() .\) In what might seem like a contradiction, math was chosen more often than any other subject in both categories! Math was chosen by 230 of the 1000 as the favorite subject, and it was also chosen by 370 of the 1000 as the least favorite subject. a. Construct a \(95 \%\) confidence interval for the proportion of U.S. adults for whom math was the favorite subject in school. b. Construct a \(95 \%\) confidence interval for the proportion of U.S. adults for whom math was the least favorite subject.
Each person in a random sample of 20 students at a particular university was asked whether he or she is registered to vote. The responses \((\mathrm{R}=\) registered, \(\mathrm{N}=\) not registered) are given here: \(\begin{array}{lllllllllll}\text { R R } & \text { N R } & \text { N } & \text { N R } & \text { R } & \text { R } & \text { N R R R R R N R R R } \mathrm{N}\end{array}\) Use these data to estimate \(\pi\), the true proportion of all students at the university who are registered to vote.
Acrylic bone cement is sometimes used in hip and knee replacements to fix an artificial joint in place. The force required to break an acrylic bone cement bond was measured for six specimens under specified conditions, and the resulting mean and standard deviation were \(306.09\) Newtons and \(41.97\) Newtons, respectively. Assuming that it is reasonable to assume that breaking force under these conditions has a distribution that is approximately normal, estimate the true average breaking force for acrylic bone cement under the specified conditions.
Fat contents (in percentage) for 10 randomly selected hot dogs were given in the article "Sensory and Mechanical Assessment of the Quality of Frankfurters" (Journal of Texture Studies \([1990]: 395-409\) ). Use the following data to construct a \(90 \%\) confidence interval for the true mean fat percentage of hot dogs: \(\begin{array}{lllllllllllll}25.2 & 21.3 & 22.8 & 17.0 & 29.8 & 21.0 & 25.5 & 16.0 & 20.9 & 19.5\end{array}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.