Chapter 8: Problem 9
Consider the following population: \(\\{2,3,3,4,4\\}\). The value of \(\mu\) is \(3.2\), but suppose that this is not known to an investigator, who therefore wants to estimate \(\mu\) from sample data. Three possible statistics for estimating \(\mu\) are Statistic \(1:\) the sample mean, \(\bar{x}\) Statistic 2 : the sample median Statistic 3 : the average of the largest and the smallest values in the sample A random sample of size 3 will be selected without replacement. Provided that we disregard the order in which the observations are selected, there are 10 possible samples that might result (writing 3 and \(3^{*}, 4\) and \(4^{*}\) to distinguish the two 3 's and the two 4 's in the population): $$\begin{array}{rlllll} 2,3,3^{*} & 2,3,4 & 2,3,4^{*} & 2,3^{*}, 4 & 2,3^{*}, 4^{*} \\ 2,4,4^{*} & 3,3^{*}, 4 & 3,3^{*}, 4^{*} & 3,4,4^{*} & 3^{*}, 4,4^{*} \end{array}$$ For each of these 10 samples, compute Statistics 1,2, and 3\. Construct the sampling distribution of each of these statistics. Which statistic would you recommend for estimating \(\mu\) and why?