Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Water permeability of concrete can be measured by letting water flow across the surface and determining the amount lost (in inches per hour). Suppose that the permeability index \(x\) for a randomly selected concrete specimen of a particular type is normally distributed with mean value 1000 and standard deviation 150 . a. How likely is it that a single randomly selected specimen will have a permeability index between 850 and \(1300 ?\) b. If the permeability index is to be determined for each specimen in a random sample of size 10 , how likely is it that the sample average permeability index will be between 950 and \(1100 ?\) between 850 and 1300 ?

Short Answer

Expert verified
a. The probability that a single randomly selected specimen will have a permeability index between 850 and 1300 is the calculated probability from step 1. \n b. The probability that the sample average permeability index will be between 950 and 1100, and between 850 and 1300 in a sample size of 10 are the calculated probabilities from step 2.

Step by step solution

01

Find Probability for Part a

First, calculate the z-scores for the values 850 and 1300. The formula for z-score is \( z = (X - \mu) / \sigma \). Using this formula, calculate the z-score for 850 (\( z_1 \)) and for 1300 (\( z_2 \)). Next, refer to the standard normal distribution table to find the probabilities corresponding to the \( z_1 \) and \( z_2 \). The area between these two z-scores in the standard normal distribution curve represents the desired probability.
02

Find Probability for Part b

Repeat the processes in step 1 by considering a sample size of 10. However, keep in mind that when you are dealing with the average of a sample, the standard deviation is divided by the square root of the sample size (this is the standard error). Now, calculate the z-scores for the values 950 and 1100, in the same way as in step 1, using the formula for z-score and standard error. Moreover, make identical calculation for the range 850 to 1300. Refer to the standard normal distribution table to determine the probabilities.
03

Interpret the Results

The probabilities obtained from the z-scores indicate the likelihood of the permeability index falling within the given ranges. Therefore, the results from step 1 represent answer for part a of the question, and the results from step 2 represent answer for part b.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A manufacturer of computer printers purchases plastic ink cartridges from a vendor. When a large shipment is received, a random sample of 200 cartridges is selected, and each cartridge is inspected. If the sample proportion of defective cartridges is more than \(.02\), the entire shipment is returned to the vendor. a. What is the approximate probability that a shipment will be returned if the true proportion of defective cartridges in the shipment is .05? b. What is the approximate probability that a shipment will not be returned if the true proportion of defective cartridges in the shipment is .10?

Suppose that a particular candidate for public office is in fact favored by \(48 \%\) of all registered voters in the district. A polling organization will take a random sample of 500 voters and will use \(p\), the sample proportion, to estimate \(\pi\). What is the approximate probability that \(p\) will be greater than .5, causing the polling organization to incorrectly predict the result of the upcoming election?

Let \(x\) denote the time (in minutes) that it takes a fifth-grade student to read a certain passage. Suppose that the mean value and standard deviation of \(x\) are \(\mu=2 \mathrm{~min}\) and \(\sigma=0.8\) min, respectively. a. If \(\bar{x}\) is the sample average time for a random sample of \(n=9\) students, where is the \(\bar{x}\) distribution centered, and how much does it spread out about the center (as described by its standard deviation)? b. Repeat Part (a) for a sample of size of \(n=20\) and again for a sample of size \(n=100\). How do the centers and spreads of the three \(\bar{x}\) distributions compare to one another? Which sample size would be most likely to result in an \(\bar{x}\) value close to \(\mu\), and why?

A random sample is selected from a population with mean \(\mu=100\) and standard deviation \(\sigma=10 .\) Determine the mean and standard deviation of the \(\bar{x}\) sampling distribution for each of the following sample sizes: a. \(n=9\) b. \(n=15\) c. \(n=36\) d. \(n=50\) c. \(n=100\) f. \(n=400\)

College students with a checking account typically write relatively few checks in any given month, whereas nonstudent residents typically write many more checks during a month. Suppose that \(50 \%\) of a bank's accounts are held by students and that \(50 \%\) are held by nonstudent residents. Let \(x\) denote the number of checks written in a given month by a randomly selected bank customer. a. Give a sketch of what the probability distribution of \(x\) might look like. b. Suppose that the mean value of \(x\) is \(22.0\) and that the standard deviation is 16.5. If a random sample of \(n=100\) customers is to be selected and \(\bar{x}\) denotes the sample average number of checks written during a particular month, where is the sampling distribution of \(\bar{x}\) centered, and what is the standard deviation of the \(\bar{x}\) distribution? Sketch a rough picture of the sampling distribution. c. Referring to Part (b), what is the approximate probability that \(\bar{x}\) is at most \(20 ?\) at least 25 ?

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free